

7th International Conference on Particle Physics and Astrophysics

Open and hidden strangeness in central A+A collisions: ratios of the averagetransverse energy density for ϕ –meson and Ω –hyperons in the range $\sqrt{S_{NN}} = 39$ GeV -2,76 TeV

O.M. Shaposhnikova¹, A.A. Marova², G.A. Feofilov²

¹Lomonosov Moscow State University ²Federal State Budgetary Educational Institution of Higher Education "Saint-Petersburg State University", Saint Petersburg, 199034 Russia This work was supported by St. Petersburg State University project ID:94031112.

Interesting strangeness

2.

Hadrons with (multiple) strange quarks

→ Systematic study of medium properties!

φ-meson (1020)

The lightest meson with hidden flavor. Contains only strange quarks.

 \rightarrow A dramatic increase prediction in the ϕ -meson after the formation of the quark-gluon plasma (QGP).

[1] - Asher Shor , PHYSICAL REVIEW LETTERS, 25.70.Np, 12.35.Ht, 21.65 (1985)

Motivation

The ratio of particles with different strangeness can indicate whether there is an increased production of φ mesons.

Particle	кварковый состав	m, <u>MeV</u>	τ, c
φ	ss	1020	1,54·10 ⁻²²
Ω	SSS	1672	8,21·10 ⁻¹¹

Transverse energy

$$< m_{\perp} > = \sqrt{m^2 + < p_{\perp} >^2}$$

 S_{\perp} - is the transverse overlap area of the colliding nuclei τ – is the formation time

4.

[2] - J.T. Mitchell (for the PHENIX Collaboration), Transverse Energy Measurements from the Beam Energy Scan in PHENIX, Nuclear Physics A 00 (2022)

[2]

Calculating the average p_{\perp}

The Levy function:

$$f_L(p_{\perp}) = \frac{norm \cdot (n-1)(n-2)}{nT(nT+m_0(n-2))} \cdot p_{\perp}(1 + \frac{\sqrt{m_0^2 + p_{\perp}^2} - m_0}{nT})$$

n, T, and m_0 - fitting parameters

Average transverse momentum:

$$< p_{\perp} > = \frac{\int_{a}^{b} f(p_{\perp}) p_{\perp} dp_{\perp}}{\int_{a}^{b} f(p_{\perp}) dp_{\perp}}$$

a and b are extended intervals over the entire range of \textbf{p}_{\perp}

To estimate systematic errors we used the blast-wave function.

 $\langle dE_{\perp}/dy \rangle_{\phi} / \langle dE_{\perp}/dy \rangle_{\text{particles}}$

$$< dE_{\perp}/dy > _{\phi}/< dE_{\perp}/dy > _{particles} = Q * (\sqrt{S_{NN}})^n$$

A different energies, the fractions of energy expended on the prodaction of varios particles with strangeness remain constant.

Предлагаю вставить картинку только с фи-мезон и омега

Theoretical models

Schwinger-like formula

$$|\mu^2| \sim \exp\left(\frac{-\pi m^2}{k}\right)$$

[10]

k is the string tension where M gives the matrix-element for the production of a quark-antiquark pair.

k ≈ 1 GeV/fm

[10] S.A. Bass et al. "Microscopic Models for Ultrarelativistic Heavy Ion Collisions", Nuclear Theory (nucl-th); High Energy Physics -Phenomenology

Thermal model

$$\left(\frac{dE_m}{dy}\right)_{y=0} = \frac{g_m V \lambda_m}{(2\pi)^2} \int \frac{m_T^3 \ dm_T}{\left[\exp\left(\frac{m_T}{T}\right)\right]}.$$

T – is temperature

(11] -- mean string tension.

[11]V.V.Vechernin, Physics of Particles and Nuclei, 2023, Vol. 54, No. 3, pp. 528–535, 2023.

Schwinger-like formula

Thermal model

Table 2: Temperature and Baryon Chemical Potential extracted after fitting the particle ratios for various centrality at $\sqrt{s_{NN}} = 200$ GeV and 2.76 TeV. Most-central, mid-central and peripheral are defined in the text for both energies.

Controlity	$\sqrt{s_{NN}} =$	= 200 GeV	$\sqrt{s_{NN}} = 2.76 \text{ TeV}$		
Centranty	T (MeV)	μ_B (MeV)	T (MeV)	μ_B (MeV)	
Most-central	169	23.5	169	1.7	
Mid-central	168.5	17	168.5	1.0	
Peripheral	168	5.5	168	0.5	

[1] - Swatantra Kumar Tiwari , Raghunath Sahoo, "Transverse Energy per Charged Particle in Heavy-Ion Collisions: Role of Collective Flow", Eur. Phys. J. A (2018) 54: 39

Что есть на данный момент?

generacy factor:

 $g_i = (2s+1)(2I+1).$

fugasity:

 $\lambda_m = \exp\left(\frac{\mu_m}{T}\right)$

 $\mu_h = B_h \mu_{Bh} + Q_h \mu_{Qh} + S_h \mu_{Sh},$

Формула, используемая в модели SHGM:

$$\left(\frac{dE_m}{dy}\right)_{y=0} = \frac{g_m V \lambda_m}{(2\pi)^2} \int \frac{m_T^3 \ dm_T}{\left[\exp\left(\frac{m_T}{T}\right)\right]}.$$

Преобразованная формула:

$$(\frac{dE_m}{dy})_{y=0} = \frac{g_m V \lambda_m}{(2\pi)^2} \cdot (e^{\frac{-m_T}{T}} (-m_T^3 T - 3m_T^2 T^2 - 6m_T T^3 - 6T^4) + e^{\frac{-m_T}{T}} \cdot const)$$

Для отношения φ к Ω:

Фактор вырождения g для частицы i учитывает все возможные внутренние степени свободы, которые могут влиять на её состояние.

$$\frac{dE_{\phi}}{dy} \bigg/ \frac{dE_{\Omega}}{dy} = \frac{g_{\varphi}\lambda_{\varphi}}{g_{\Omega}\lambda_{\Omega}} \cdot \frac{\left(e^{\frac{-m_{T\varphi}}{T}}\left(-m_{T\varphi}^{3}T - 3m_{T\varphi}^{2}T^{2} - 6m_{T\varphi}T^{3} - 6T^{4}\right) + e^{\frac{-m_{T\varphi}}{T}} \cdot const\right)}{\left(e^{\frac{-m_{T\Omega}}{T}}\left(-m_{T\Omega}^{3}T - 3m_{T\Omega}^{2}T^{2} - 6m_{T\Omega}T^{3} - 6T^{4}\right) + e^{\frac{-m_{T\Omega}}{T}} \cdot const\right)}$$

Некоторые преобразования ф-лы

$$\frac{dE_{\phi}}{dy} \left/ \frac{dE_{\Omega}}{dy} = \frac{g_{\varphi}\lambda_{\varphi}}{g_{\Omega}\lambda_{\Omega}} \cdot \frac{\left(e^{\frac{-m_{T}\varphi}{T}}\left(-m_{T\varphi}{}^{3}T - 3m_{T\varphi}{}^{2}T^{2} - 6m_{T\varphi}T^{3} - 6T^{4}\right) + e^{\frac{-m_{T}\varphi}{T}} \cdot const\right)}{\left(e^{\frac{-m_{T}\Omega}{T}}\left(-m_{T\Omega}{}^{3}T - 3m_{T\Omega}{}^{2}T^{2} - 6m_{T\Omega}T^{3} - 6T^{4}\right) + e^{\frac{-m_{T\Omega}}{T}} \cdot const\right)}$$

Используемые допущения и значения T(статья) и VS_{NN}:

$$\begin{split} \mu_{\varphi} &= \mu_{B} \to \lambda_{\varphi} = \lambda_{\Omega} \\ \frac{dE_{\phi}}{dy} / \frac{dE_{\Omega}}{dy} &= 1 \\ const &= 0 \\ T &= 169 \; MeV \\ \sqrt{S_{NN}} &= 200 GeV \end{split}$$

Back-up

Back-up Back-up Back-up Back-up Back-up Back-up Vvvvvv Back-up

$< dE_{\perp}/dy > vs. \sqrt{S_{NN}}$, very central (0-5 %) $|\eta| < 0.5$

The dependence of $\langle dE_{\perp}/dy \rangle$ on $\sqrt{S_{NN}}$ for the most central collisions (0-5%) at energies of 39, 200, and 2760 GeV.

Approximation function: $\langle dE_{\perp}/dy \rangle = Q * (\sqrt{S_{NN}})^n$

Particles	n
φ	0.36±0.04
$\Xi + \Xi^{-}$	0.30±0.05
Λ	0.28±0.04
$\Omega + \Omega^-$	0.39±0.08
K ₀ ^s	0.44±0.06

Similar functional dependencies for different particles.

8.

φ -meson and particles with u- and d- quarks [9]

[9] Shaposhnikova, Marova, Feofilov, "Open and hidden strangeness with kaons and ϕ -mesons in Bjorken energy density approach for central A+A collisions from SPS to LHC", Physics of Particles and Nuclei

Approximation function: $\langle dE_{\perp}/dy \rangle = Q$ * $(\sqrt{S_{NN}})^{n}$

Particles	n/2
φ	0.18±0.02
π	0.184±0.05

The slope of the function for π mesons is similar from that of strange hadrons.

Thermal model: dN/dy

FIG. 3: Variation of rapidity distributions of various hadrons with respect to $\sqrt{s_{NN}}$ at midrapidity.

Lines show our model calculation. Symbols are the experimental data [9, 49, 50].

$$\frac{dN_i}{dy} = \int_{-\eta_{max.}}^{\eta_{max.}} \left(\frac{dN_i}{dy}\right)_{th} (y-\eta) \ d\eta,$$

The resulting rapidity spectra of ith hadron, after incorporation of the flow velocity in the longitudinal direction is [11, 12]:

FIG. 2: Variations of total multiplicities of π^+ , K^+ , K^- , ϕ , Λ , Ξ^- , $(\Omega^- + \bar{\Omega^+})$, and $\bar{\Lambda}$ with respect to center-of-mass energy predicted by our model. Experimental data measured in central Au - Au/Pb - Pb collisions [31–47] have also been shown for comparison. In this figure, A, B, C, D, E, F, G, and H represent the multiplicities of π^+ , K^+ , K^- , ϕ , Λ , Ξ^- , $(\Omega^- + \bar{\Omega^+})$, and $\bar{\Lambda}$, respectively.

[2] - S. K. Tiwari *, P. K. Srivastava, and C. P. Singh, "The effect of flow on Hadronic Spectra in an Excluded-Volume Model", J. Phys. G : Nucl. Part. Phys. 40, 045102 (2013)

, GeV	Particles	, GeV/c		π+, K+, p,	π-, K-, p-		, GeV	, GeV	nf	, GeV/fm²	knowimontal data usad
2.4	Pions	0.4		237±17	233±17		HEA	This work 298.7±14.3		This work 2.5 ± 0.14	ADELIMENTAL UALA USEU
	Kaons	[1] 0.6-0.65±	0.05	[1] 32.4±2.3	[1] 37.6±2.7			111.5 ± 16.2		0.94±0.16	
	Desteres	[1]		[1]	[1]			112.9 + 26.9		0.06 + 0.27	4 —
	FIOIDIIS	[1]		[1]	29.0±3.8 [1]			113.8±20.8		0.98±0.27	
	Pions	0.4		280 ± 25 [1]	278±25 35		355 ± 21		2.99 ± 0.2		
	Kaons	0.65-0.7±	:0.05	42.7±6.2	46.3±6.5			145.8 ± 35.3		1.2 ± 0.35	1
	Protons	1±01		20.0±3.4	28.2 ±4.4			132.2 ± 35.4		1.1 ± 0.35	4
	Pions	[1] 0.4		[1] 327 ±25	[1] 322±25		392±24		392 ± 24	-	
	V	[1]	0.05	[1]	[1]		[1]		181 + 40.8		-
	Kaons	0.7-0.8±0 [1]	0.05	49.5±6.2 [1]	51.3±6.5 [1]			181±40.8		181±40.8	
	Protons	1.08 [2]		10.482.4 [2]	24.7 + 4.4			14.74.3		14.74.3	-
	TIOIOIIS	[1]		[1]	[1]			177.0141.5		177.0 ± 41.5	
		0.970.02 [0.95±0.1	3] 0.9±0.1	7.70.3 [3] 1.83+0.2 [6]	2.17:	±0.19 [6]		10.840.5 2.98+0.5	3.5+0.5	10.840.5	-
		2	[8]						0.010.0		
		0.84±0.0	0.85±0.0	16.7±1.1 [6]	12.7±0.9 [6]			23.3±2.4	17.8±1.9		4
		6 [8]	6 [8]								
		1.095	5±0.111		0.53±0.04			1.06±0.13			1
)	Pions	0.517+-	0.520+-	733±54	[0]	732±52		$1179.96 \pm$		9.1 ± 1.0	1
		0.019	0.018	[4]		[11]		110.7			
Kaons	Kaons	0.876+-	0.867+-	109±9		109±9		436.7 ± 56.5		3.4 ± 0.5	1
		0.026[4]	[4]	[4]		[11]					
		1.310.06[5]	19.562.6[5]				30.95.09		0.230.04	
											Наки не знаю как ее вставля
	Protons	1.333+-	1.353+-	34±3		33±3		219.5 ± 27.1		1.7±0.24	
		0.033 [4]	0.034 [4]	[4]		[4]					
		1.310.07 [6]	13.81.8[6]				22.93.8		0.180.03	22.93.8 0
											8
		1.57±0.0 4	1.56±0.0 4		6.67±0.47 [3]			13.66±1.02			
		[10]	[10]		2612						4
		1.48	±0.04 [4]		20±3 [4]			48.19±5			
		1.8	3±0.1 [10]		1.19±0,19 [3]			2.92±0.49			
0	Pions	0.5682		1699.80				1491.8±167.	2	11.5±1.5	1
	Kaons	0.9177		273.41				569.8 ± 34.8		4.4 ± 0.3	1
		[7]	81	[7]				37 54 6 5		0.290.05	4
	Protons	1.4482	~	74.56				257±18		1.99±0.16	4
		[7]	01	[7]				20.02 -		0.00	4
4	Pione	0.530.021	8]	14.9 1.2 [8] 1002 6757 2 191				29.83.9 826.6551.5		11 40 7	4
-	Kaons	0.90.0319	4	149.3714.07 [9]				308		4 20 3	4
	Protons	1.40.0219	1	46.214.7 [9]			1	156.9		2,150,1	1
		-		· · · ·						+	-

[±]5.

Индусы, статья 3.0

FIG. 42: The ratio of $\frac{dE_T}{d\eta}$ and $\frac{dN_{ch}}{d\eta}$ at midrapidity, as a function of center of mass energy. Experimental data are compared to the predictions from thermal model, gluon saturation model and the estimations obtained in the framework of the hybrid model fitting to transverse energy and charged particle data.

Нормальный слайд давай сделаем

Тезисы введения:

- 1) Есть модель SHGM -Statistical Hadron Gas Model
- 2) Для энергий RHIC она хорошо описывает некоторые эффекты???
- 3) Для энергий LHC наблюда.тся отклонения, например отклонения зависимости dNch/dŋ от энергии от логарифмической
- 4) Встатье используется модель SHGM с включенным потоком, для объяснения этих эффектов.

모든 종류의 헛소리

Freeze-Out Parameters in Heavy-Ion Collisions at AGS, SPS, RHIC, and LHC Energies

 $\langle E_T \rangle = \left(\frac{\pi}{8} + \frac{1}{4}\right) \left[\langle E \rangle - m_N \langle N_B - N_{\bar{B}} \rangle \right].$

"Relativistic Heavy-Ion Physics" by Reinhard Stock:

 $\mu_h = B_h \mu_{Bh} + Q_h \mu_{Qh} + S_h \mu_{Sh},$ $m_T = \sqrt{m^2 + p_T^2}$ $\left(\frac{dE_m}{dy}\right)_{y=0} = \frac{g_m V \lambda_m}{(2\pi)^2} \int \frac{m_T^3 dm_T}{\left[\exp\left(\frac{m_T}{T}\right)\right]}.$ $q_i = (2s_i + 1)(2I_i + 1),$ $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ $\sqrt{s_{NN}} = 200 \text{ GeV}$ Centrality T (MeV) μ_B (MeV) T (MeV) μ_B (MeV) $rightarrow z_i = e^{\mu_i/T}.$ 1.7Most-central 23.5169 169Mid-central 168.517 168.51.0Peripheral 0.51685.5168 $-x^{3} \cdot T \cdot e^{-\frac{x}{T}} - T^{2} \cdot 3 \cdot x^{2} \cdot e^{-\frac{x}{T}} - T^{3} \cdot 6 \cdot x \cdot e^{-\frac{x}{T}} - T^{4} \cdot 6 \cdot e^{-\frac{x}{T}} + Const$