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2025 LHC special run: p-O, O-O and Ne-Ne
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Goals and requests for the run

Luminosity targets in nb~!

p-0 0-0
ATLAS 1.5 0.8 O.1
ALICE 5 0.5 O.1
CMS 3 0.8 O.1
LHCb 2 0.5 O.1

- official target

Beam energy:
e p-0O:6.8 TeV
e O-O, Ne-Ne: 5.36 TeV



0-0 and Ne-Ne beam transmutation

Colliding .O.also with other ions - Simulations done to estimate contamination

“pollution” (J. Jowett et al.):
. _ . - (o) .
— New beam physics effect not seen From simulation, expect <<1% of total integrated
previously at LHC! luminosity from O-[other ion] or Ne-[other ion]
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Overview of the Run
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Luminosity

p-0O 0-0 Ne-Ne
1/nb
target delivered ratio target delivered ratio target delivered ratio
ATLAS/
LHCf 1.5 1.8 1.2 - - - - - -
ATLAS - 6.9 - 0.8 8.2 10.3 0.1 1.0 10
ALICE o 6.9 1.6 0.5 515 10.3 0.1 0.91 o1
CMS 3 7.85 16 0.8 04 1.8 0.1 0.91 o1
LHCb 2 33.1 16.6 0.5 5.75 1.5 0.1 0.61 6.1




Summary 1/5

* First LHC runs with oxygen and neon done
summer 2025

O days assigned in total for p-0O, O-0O, Ne-Ne
(commissioning + physics);

* Never switched particle species so quickly in
LHC before;

* All luminosity targets met and most were
exceeded by large factors;

* Now looking forward to seeing the physics
results from these data sets!

From my LMC talk 18/6/2025
“Possibly, this run holds the record
ratio of (preparation work) / nb1”

Update: It also has an impressive ratio
of champagne / nb-’




What About Less Extreme Conditions

CMS

How and where does this
transition happen?

What’s the smallest QGP droplet?
How to understand flow-quenching puzzle in pPb?

Vacuum (?) Strong interacting medium




Light lons Will OO or NeNe Generate QGP?

O V‘-

CMS Experiment at the LHC, CERN
\ Data recorded: 2025-Jul-05 03:20:06.329728 GMT
A Run/Event/LS: 394154 / 8598934 /5

\
\\

160 and 20Ne collisions

—_— - Enable collision size scan along with pp,

129XeXe and 208PpbPb collisions

> Larger transverse size and more comparable
longitudinal structure than pPb
>~ Mitigate event selection bias in peripheral HI

Toward understanding of
minimal conditions for QGP
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First results
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Phenomenology Hydrodynamics

CMS-PAS-HIN-25-010
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Final-state particle anisotropy in ¢
dN

@oc1+2vncos2(gb—‘112)+...

Existence of QGP — non-zero v»

* Non-zero v2 = Collective motion signal

» Dependence of centrality follows the
expectation of hydrodynamics
> Increase to semi-central events
- More anisotropic initial geometry
> Decrease to more peripheral events
- Smaller and diluter medium to flow
- Higher viscosity

CMS-PAS-HIN-25-009

Collective flow v,

OO0 7 nb" (5.36 TeV)
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Nuclear Shape Imaging

OO0 7 nb™' + NeNe 0.8 nb™' (5.36 TeV)

I | | I | I | | | | | | | | | I | | I | I | | | | |
- CMS Preliminary o v,{2,|Anl>2} -
- 0.3< p. < 3.0GeVic --- v,{2,|IAnI>2}, Sub _
~ nl <2.4
S 121 —
~
[ - .
Z
(()) _
<
O I )
© 1.0F —
> f " Trajectum (NLEFT) -
- PRL 135 (2025) 012302 Trajectum (PGCM) -
. PRL 135 (2025) 022302 B IP-Glasma (PGCM)
l | | | | I | | | | | | | | | I | | | ] I | | | | I
jorBlon 40 30 20 10 0

Centrality (%)
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Bowling shape of Ne enhances v ratio In
central events, predicted by hydro models
» Theoretical uncertainties from medium

evolution are largely canceled in ratio
due to comparable size of O and Ne

* Probed Ne deformation

PRL 135 (2025) 012302




Quenching parton energy loss in medium

CMS-PAS-HIN-25-008

6 6.1 nb™' (00), 1.02 pb™ (pp), 5.36 TeV
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N

CMS observes suppression in OO

Raa ~70 smaller than 1

> Measured up to pt 100 GeV/c

> The smallest collision system in which
suppression is observed up to now
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Test Knowledge of Quenching Across A

CMS-PAS-HIN-25-014
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Summary 2/5

* Hydrodynamic models predict data;

* The smallest collision system where suppression is observed up to now;

* Central OO reaches multiplicity per participant nucleon comparable to
heavy ions;

* Initial Ne nuclear shape probed by final-state particle correlation;



Emergence of the quark-gluon plasma

Hot QCD, PRD 90 (2014) 094503

Lattice QCD predicts rapid change In
non-int. limit thermodynamic properties at critical
temperature T, =~ 155 MeV

Formation of QGP — quarks and gluons
1N T TN TN TN TN NN N N NN NN (NN (NN NN TN MO MO MO OO N N ar‘enolonger‘conﬁned

130 170 210 250 290 330 370




QGP in Pb+Pb

Nature Physics 15 (2019) 1113
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Jet interactions with the QGP
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Measured anisotropic expansion in Pb-Pb described by hydrodynamics for produced hadrons

v Achieved with QGP equation of state and small but finite QGP viscosities




Features of QGP formation in pp and p-Pb

Eur. Phys. J. C 84 (2024) 813
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Jet interactions with the QGP

0.10

Phys. Rev. C 104 (2021) 041901

O-0 ysyn=6.5TeV

- Woods — Saxon -@  Woods — Saxon + quarks A~ a—clustering
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Hydrodynamic calculations employ QGP equation of state in OO and Ne-Ne to predict v,

v Modern low energy nuclear structure models e.g PCGM or NLEFT can be input



Imaging the ‘Ne nucleus

Phys. Rev. Lett. 135 (2025) 012302

NUCL SCI TECH 35 (2024) 220
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Jet quenching predlctlons
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Phys. Rev. Lett. 126 (2021) 192301
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Partic

le production in O+0 and Ne+Ne collisions
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Anisotropic flow in O+0 and Ne+Ne collisions

Ne-Ne, {5 =5.36 TeV First O+0 and Ne+Ne flow paper

Trajectum submitted for publication!
NLEFT PGCM

333 arXiv:2509.06428
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ALICE measurements well described by geometry-induced hydrodynamic flow predictions

Y NLEFT nuclear structure best favoured = some tension with other hydrodynamic implementations




Anisotropic flow in O+0 and Ne+Ne collisions

Phys. Rev. D 94 (2014) 034042
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Searches for jet-quenching in OO collisions
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pQCD baseline calculation

v Only cold nuclear matter effects (CNM)
e.g. nuclear PDF modification

Energy loss calculation
v Only final state effects

Expected reduction in Norm. Unc. after
full VDM scan analysis...

Searches for jet-quenching in O+0 collisions
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More to come...

Particle ratios
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Summary 3/5
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Initial ALICE results indicate OO and Ne-Ne collisions look like a QGP

Common picture emerging across LHC experiments from first measurements...



Heavy lon collisions
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2-Particle Correlation analysis

Standard 2-Particle Correlation analysis, i.e. study of azimuthal (Ad)
and longitudinal (An) correlations between pairs of particles ATLAS 0.5<p2<5GoV

0+0 5.36 TeV 0-5%

¢ Clear,long-range correlations observed (‘the ridge’)




2-Particle Correlation analysis

Standard 2-Particle Correlation analysis, i.e. study of azimuthal (Ad)
and longitudinal (An) correlations between pairs of particles ATLAS

0+05.36 TeV

31.02
< 1.01
| —

4 1

¢ Clear,long-range correlations observed (‘the ridge’)

¢ Non-flow contributions to be unraveled, forinstance

* Near-side contribution from jets, away-side contribution from dijets ..

0.5<p‘;‘b<5 GeV
0-5%




2-Particle Correlation analysis

Standard 2-Particle Correlation analysis, i.e. study of azimuthal (Ad)
and longitudinal (An) correlations between pairs of particles ATLAS 0.54p™<5GeV
0+0 5.36 TeV 50-60%

¢ Clear,long-range correlations observed (‘the ridge’)

¢ Non-flow contributions to be unraveled, forinstance

* Near-side contribution from jets, away-side contribution from dijets ...

* Even more pronounced in more peripheral collisions...




2-Particle Correlation analysis: non-flow

Project out the distribution on the A¢ axis while also selecting
| An| > 2toremove near-side correlations and fit the result with aras 0.55p7"<5Goy
Fourier

CAg) = Co| 1+2 ) v,, (P pb) cos(nAg)
n=1

_—

-

Results still sensitive toresidual ~ Stosr IT:i;T\:Vplate Fit ~ 50-60%
non-flow contribution L. Data

102 o Non-Flow

= Template fit method to |
remove it, using peripheral ool
(> 80%) O+0O and Ne+Ne
collisions to estimate the O
non-flow Lo ]




2-Particle Correlation analysis: results

Q g3l ATLAS
- 0+0 5.36 TeV

" 0V2 IV3 xV4

e vi2y Ovi{2)

——
0.5<p$_<SGeV

0-5%

e mn @

ATLAS ~ 0.5<p**<5GeV :
0ol ©0+0 5.36 TeV 7 Ne+Ne 5.36 TeV ‘
"I * Pb+Pb 5.02 TeV ¢ Xe+Xe 5.44 TeV ]
0.15- g
- X X X =
: x4 P& P e
0.1~ -
¢ 9 8 V¥ e % 9 6 ¢ 4 .
- $ -
i o _
0.05= E
 x .
- | | : | | | ! | i

0 20 40 60

Centrality [%]



Exposing the bowling-pin geometry of Ne
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¢ Usual trend with centrality (e.g., v2reduced in more central collisions): trivial geometry?

¢ But O+0O v2decreases more rapidly than Ne+Ne while o
approaching geometrical saturation: nuclear geometry! | | ’

¢ Similartriangular flow between the two systems
* Input formodeling?




Dijet momentum imbalance - in a nutshell

X = Pr.2 Dijet asymmetry In thg presence of the medium, the
PT,1 picture significantly changes

% @(T) Modification of the dijet momentum balance
R directly probes the medium properties



Jet reconstruction performance in O+0 vs Hi

Significantly lower underlying event in O+0O compared to Pb+Pb and Xe+Xe

Phys. Rev. C107 (2023) 054908
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Ongoing effort to significantly
reduce uncertainties for final results
( jet calibration, data overlay)
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Results
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Summary 4/5

* The vz coefficients show clear evidence for a difference between Ne and O shapes,
consistent with a bowling-pin structure of the Ne;

Do initial state guantum fluctuations wash out the effects of the initial nuclear
geometry? No;

 We see clear indications of quenching in O+0O: significantly less than in central Pb+Pb,
but compatible with peripheral.This is indicative of the path-length dependence of £, _;




Motivation: Nuclear structure & medium properties in nuclear collisions
= Nuclei are not necessarily spherical
= Well studied by many approaches:VVoods-Saxon density profile, ab-initio calculation, ...

= Not directly observed at low energy experiments
238U

= High-energy nuclear collisions

= Can we see evidence that collective motion converts initial geometry into momentum space!?

Figure from You Zhou
; (-
Initial state ) System Final state
j @_. ? anisotropic momentum
3 distribution

anisotropic spatial e ]
distribution
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o
L




Motivation: Nuclear structure & medium properties in nuclear collisions

0,06 i | | l | l l l | l l | | l l ]..6 - | [ [ ! '
; 208ph1160 (PGCM) - . v2{2} -
0.05- ——— 208pp 1 20Ne (PGCM) - N vs{2} -
- 1.4F W E

et 1 208p . 1 40 7

-
o
llIlll

OAr from NLEFT -

208pp 4+ X \/SNN = 68 GeV _:

p—d
ek
rTrrrr[r1?

—t
-
N L

08Pl 20Ne /208Ph-+OAr v, {2}
.
I

0.01 F

&
N
T

O
Q0
LI

O ) 00 : I 1 l I 1 I | | 1 \ 1 | \ 1 \ | | \ 1 \ 1 | | | \ 1 | |
0 20 40 60 80 0 20 40 60 80

Centrality (%) Centrality (%)

The theory predicts that the elongated shape of neon creates a larger elliptical flow vos.
Therefore, a comparison of Pb+Ne and Pb+Ar may reveal the effect of nuclear deformation.




The cumulant method

Two-particle correlations Multi-particle correlations

We measure the flow using cumulants, a method that reduces the contribution
of the nonflow and uses multiple correlations. This was first applied at LHCDb!




The LHCb experiment

JINST 19 PO5065 (2024)

= SMOG2:The updated System for Measuring Overlap with Gas

Magnet SciFi RICH2 M
Tracker \ \

// Side View HCAL . . . :
// T e M \\ = A high density storage cell placed in the LHC primary vacuum

=  Wide choice of injectable gases: He, Ne,Ar, H,, D,, ...

= Unique physics opportunities at intermediate energies:
JSnv € 130,115] GeV

®  Dataset for this analysis: PbNe(0.06 nb ') and PbAr(1.7 nb-') at
\VVSNN — 70.9 GeV

= A primary vertex reconstructed within the SMOG?2 cell

‘ L1100 O

SMOG?2 Storage cell Nominal beam-beam
20 cm collision point




The LHCb experiment
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We see that vq is higher for
PbNe than for PbAr,
especially in central
collisions—this Is consistent
with hydrodynamic
predictions taking into
account the deformation of
the neon nucleus.



NeNe/OO data-taking: Colliding mode
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NeNe/OO data-taking: Fixed-target
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Summary 5/5

" Preliminary anisotropic flow measurements in PbNe and PbAr collisions

" First result with the upgraded SMOG2 system

®  Evidence of the 2°Ne nucleus deformation and its effect on collective motions

= Further measurements to reveal the possible cluster structures of light nuclei (e.g. v,, — pt correlation)
and tests of hydrodynamic predictions (e.g. v, (pT)) will follow soon

= |n the 2025 light ions run, LHCb collected unique OH, and NeNe fixed-target samples as well
as OO and NeNe samples in colliding mode

= Opportunity for cosmic-ray measurements

®  Nuclear structure and collective dynamics in small systems
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