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The problems of event parameters estimation s

Studied problems
« Event-wise estimation of the impact parameter value Hits information that was used for feature

» Select head-on collisions (small impact parameter) engineering:
» Coordinate of cell, which registered hit

« Event-wise estimation of the participants number

MCP Detector rings

« Particle time of flight (~50ps accuracy)

We used MC generated data of Au+Au collisions
at energies /syy = 11 GeV, which consists of
three datasets:

« 200 000 events generated by QGSM' model
« 360 000 events generated by EPOS? model
vacuum beam-pipe « 50 000 events generated by PHQMD?3 model

Interaction point

Scheme of investigated detectors geometry
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Examples of input data: Multiplicity of charged particles and their avera

angle

QGSM:

EPOS:
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Examples of input data: Multiplicity of charged particles and their average
ang le Multiplicity of charged particles Average polar angle of particles

Events distribution by
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Used artificial neural networks 9
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Leaky ReLU
f(z) = max(0.01z, z)

[ .I,',,'; Wn

Scheme of an artificial neuron model

Example of used dense neural network with convolutional
layer, solving classification problem.

Input — Table of particles information (3x150 features),
convolutional layer (16 filters 3x6), 3 hidden layers (128,
64, 32 neurons), output — 2 neurons — probabilities of an
event belonging to each class.

Example of used dense neural network architecture,
solving regression problem.

Input — 2 event features, 4 hidden layers (4, 8, 16, 4
neurons), output — 1 neuron — estimated impact
parameter value

Leaky RelLU activation function. Optimizer — Adam. Optimized functions — mean squared error, binary cross entropy.
4
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Table of NN performance on separate dataset training

Here we train model on one dataset at a time and used detector system consisting of pair of rings with R=25cm,
r=2.5cm, L=4m, At=50ps, 352 cells.

% 5t Petersburg
University

Event features Binary QGSM EPOS
(Number of classificatory
features) threshold [fm] | RMSE [fm] | TPR [%] FPR[%] | RMSE[fm] | TPR [%] FPR [%]
(lower is better) (higher is better) (lower is better) (lower is better) (higher is better) (lower is better)

Multiplicity + 5 97.7 58 88,1 38,1
angle (2) 0,77 2,06
Multiplicity + 1 989 8,8 77,2 21,1
angle (2)
Time of flight 5
(3x150) (full info) 98,6 4,3 91,7 16,4
Ti f fligh 1 0.68 123

Ime of flight 90,3 6,2 94,0 17,8

(3x150) (full info)

Results demonstrate, that using table of registered particles with information about their spatial and temporal
distributions shows better result than simple features. While trained on separate datasets network learns to estimate

impact parameter only on data from exactly that dataset.

RMSE - root of mean squared error, TPR — true positive rate, FPR — false positive rate.
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Simple network trained on QGSM dataset © s

Here we trained the model on QGSM dataset, and performed tests on the three datasets available: QGSM, EPOS and
PHQMD.

Tests on: QGSM EPOS PHQMD
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Acc. sqrt(MSE) = 0.68 fm, MAE = 0.53 fm
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Simple network trained on QGSM dataset O

Here we trained the model on QGSM dataset, and performed tests on the three datasets available: QGSM, EPOS and
PHQMD.

Tests on: QGSM EPOS

Acc. sqrt(MSE) = 17.21 fm, MAE = 12.39
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Search for universal event characteristics W

Here we create algorithms to extract features from datasets individually.
Extracted features are useful for impact parameter estimation, but do not solve generator-dependence problem

QGSM:

EPOS:

PCA Feature Ne 1, feature explained variance: 0.303 PCA Feature Ne 1, feature explained variance: 0.349
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Simple network trained on QGSM+EPOS mixed dataset LA

Here we trained the model on mixed 1:1 QGSM and EPOS dataset, and performed tests on the three datasets available:
QGSM, EPOS and PHQMD.

Tests on: QGSM EPOS PHQMD
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Simple network trained on QGSM+EPOS mixed dataset LA

Here we trained the model on mixed 1:1 QGSM and EPOS dataset, and performed tests on the three datasets available:
QGSM, EPOS.

Tests on: QGSM EPOS

Acc. sqrt(MSE) = 20.40 counts, MAE = 15.85 JAcc. sqrt(MSE) = 58.62 counts, MAE = 39.14
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Domain adaptation: Domain-adversarial

neural network’ &

The idea is to train a neural network on a mixed dataset that can simultaneously estimate the impact parameter and not

distinguish which generator the event came from.
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[1] Mei Wang, Weihong Deng, “"Deep visual domain adaptation: A survey”, Neurocomputing, 2018, V. 312, P. 135-153,

https://doi.org/10.1016/j.neucom.2018.05.083
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Domain-adversarial neural network, extracted features

Extracted features for two datasets do blend, however impact parameter estimation is worse than for simple mixed
dataset training, so it is not enough.

Feature #1, both generators
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The deep reconstruction neural network (DRNN)' B

The idea is to train a neural network on a mixed dataset that can simultaneously estimate the impact parameter and
reconstruct the input data to preserve most important information.

(source) Class

Unflatten

[1] Mei Wang, Weihong Deng, “"Deep visual domain adaptation: A survey”, Neurocomputing, 2018, V. 312, P. 135-153,
https://doi.org/10.1016/j.neucom.2018.05.083



The deep reconstruction neural network. New features.
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Extracted features look more simple but impact parameter dependence is much more obvious.
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: £ Ty
The deep reconstruction neural network. Results.

Here we trained the DRNN model on mixed QGSM and EPOS dataset, and performed tests on the three datasets
available: QGSM, EPOS and PHQMD.

The results show better accuracy, especially for the regions of small impact parameter, less than 7 fm.

Tests on: QGSM EPOS PHQMD

Acc. sqrt(MSE) = 0.71 fm, MAE = 0.88 fm Acc. sqrt(MSE) = 1.61 fm, MAE = 0.88 fm
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The deep reconstruction neural network. Results.

Here we trained the DRNN model on mixed QGSM and EPOS dataset, and performed tests on the three datasets
available: QGSM, EPOS and PHQMD.

The results show better accuracy, especially for the regions of small impact parameter, less than 7 fm.

Tests on: QGSM EPOS

00Acc. sqrt(MSE) = 19.47 counts, MAE = 14.32 00Acc. sqrt(MSE) = 60.02 counts, MAE = 39.25
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classification problem.

Here we trained the DRNN model on mixed QGSM and EPOS dataset to label the events with impact parameter <5 fm
(binary classification problem), and performed tests on the three datasets available: QGSM, EPOS and PHQMD.

Tests on: QGSM EPOS PHQMD
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Real: 1 -
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17.6% 82.4%

. 82.8% .
Real: 2 (82.6%) Real: 2 (71.9%) Real: 2 (16.1%) (74.9%)
Predicted: 1 Prediclted: 2 Predicted: 1 Prediclted: 2 Predicted: 1 Predicted: 2
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Conclusions

1. Hidden dependencies — With the help of artificial neural networks, it has become possible to extract hidden
patterns in data from different sources.

2. Domain adaptation — Several domain adaptation techniques we investigated. While some of them showed
results worse than for simple mixed dataset training, the “"Deep reconstruction neural network” outperformed
other approaches, demonstrating good generalization on new dataset for collisions with small impact
parameter.

3. New methods are worth researching — Investigated methods are capable of working simultaneously with
data from different event generators, and their performance can be tuned with data from other generators.

4. Detector generalization — We performed computational experiments addressing MCP detectors (For more

information on MCP detectors see talk “Manowymawmm 4eTekTop MUMHUMaNAbHO NOHU3UPYHOLLETO U3YYEeHMS Ha
ocHoBe MKTI" by Hukoanm Makapos, 05.07.2025), but the techniques can be applied to detectors of other

types.

The authors acknowledge Saint-Petersburg State University for a research project 103821868
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Using variational autoencoder (VAE) as the domain adaptation techniqu%& Et"?”e::;‘s‘;m
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Variational autoencoder results

& 5t Petersburg
University

While the use of variational autoencoders can result in meaningful event features, the
results of impact parameter estimation are worse than with other techniques.
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Examples of input data: Multiplicity of charged particles and their avera
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