Directed flow of Λ hyperons in Xe+Cs(I) collisions at 3.8 AGeV in the BM@N experiment

V. Troshin, M. Mamaev, P. Parfenov, A. Taranenko

75th International Conference "Nucleus-2025. Nuclear physics, elementary particle physics, and nuclear technologies"

01-06 July, 2025

The work was funded by the Ministry of Science and Higher Education of the Russian Federation,

Project "Fundamental and applied research at the NICA (JINR) megascience experimental complex" FSWU-2025-0014

Outline

- Motivation
- BM@N setup and analysis methods
- Performance study with JAM model
- Results
- Summary and Outlook

Anisotropic transverse flow

Spatial asymmetry of energy distribution at the initial state is transformed, through the strong interaction, into momentum anisotropy of the produced particles.

Study at Nuclotron-NICA energies

M. Abdallah et al. [STAR Collaboration] 2108.00908 [nucl-ex]

Strong energy dependence of dv_I/dy and v_2 at $SN\sqrt{s_{NN}}$ -11 GeV. Anisotropic flow at FAIR/NICA energies is a delicate balance between:

- The ability of pressure developed early in the reaction zone
- Long passage time (strong shadowing by spectators)

Yasushi Nara et al. *Phys.Rev.C* 106 (2022) 4, 044902

- A potential is important to explanation of existence
- of two-solar-mass neutron stars
- Constrained by v₁
- Best agreement with model includes interactions with hyperons

The BM@N experiment: recent Xe+Cs(I) 3.8 AGeV run

A hyperon reconstruction and anisotropic flow measurements $\Lambda \rightarrow p + \pi$

- 1. Centrality determination and track selection
- 2. Building Λ with p π^{-} pairs
- 3. Applying topological selection cuts
- 4. Fitting the m_{inv} distributions and $v_n(m_{inv})$

$$v_{n}^{SB}(m_{inv},p_{T})=v_{n}^{S}(p_{T})rac{N^{S}(m_{inv},p_{T})}{N^{SB}(m_{inv},p_{T})}+v_{n}^{B}(m_{inv},p_{T})rac{N^{B}(m_{inv},p_{T})}{N^{SB}(m_{inv},p_{T})}$$

KFParticle formalism

KFParticle:

• developed for complete reconstruction of short-lived particles with their $P, E, m, c\tau, L, Y$

Main benefits:

- based on the Kalman filter mathematics
- idependent in sense of experimental setup (collider, fixed target)
- allows one reconstruction of decay chains (cascades)
- daughter and mother particles are described and considered the same way
- daughter particles are added to the mother particle independently

- PV primary vertex
- V₀ vertex of hyperon decay
- dca distance of closest approach
- path decay length

Scalar product method for v_n calculation

From momentum of each measured particle define a u_n -vector in transverse plane:

$$u_n=e^{in\phi}$$
 $Q_n=rac{\sum_{k=1}^N w_n^k u_n^k}{\sum_{k=1}^N w_n^k}=|Q_n|e^{in\Psi_n^{EP}}$

Scalar product (SP) method:

$$v_1=rac{\langle u_1Q_1^{F1}
angle}{R_1^{F1}}$$

Where R_1 is the resolution correction factor

$$R_1^{F1} = \langle \cos(\Psi_1^{F1} - \Psi_1^{RP})
angle$$

Symbol "F2(F1,F3)" means R₁ calculated via (3S resolution):

$$R_{1}^{F2(F1,F3)} = rac{\sqrt{\langle Q_{1}^{F2}Q_{1}^{F1}
angle \langle Q_{1}^{F2}Q_{1}^{F3}
angle}}{\sqrt{\langle Q_{1}^{F1}Q_{1}^{F3}
angle}}$$

FHCal divided into 3 sub-events

Selection of Λ candidates with KFParticle

Combinatorial background can be filtered with various topological and quality cuts

Invariant mass fit method with JAM model

Good fit quality for inv mass distributions in p_T-y bins An agreement with signal from model

Azimuthal asymmetry of the BM@N acceptance

Non-uniform acceptance - corrections are required

Corrections are based on method in:

I. Selyuzhenkov and S. Voloshin PRC77, 034904 (2008)

Performance study with JAM fully reconstructed data

For performance study 15 M events of fully reconstructed data from JAM model are used

Very limited p_T-rapidity coverage

An agreement with signal from model

v_1 of Λ hyperons in the BM@N Xe+Cs(I) at 3.8AGeV exp data

Good performance of KFParticle and invariant mass fit method, applied to BM@N experimental data

v_1 of Λ hyperons for different systems with JAM model

System-size effect should be checked for future comparison with existing experimental data

No significant difference

Summary

- Performance study for flow measurements of Λ hyperons for Xe+Cs(I) at E_{kin} =3.8 AGeV with JAM at BM@N is presented
 - o Invariant mass fit method for reconstructed data show an agreement with simulated data
 - \circ The size of colliding system should not strongly affect the v_1 measurements
- Application of invariant mass fit method for directed flow measurements at recent BM@N Xe+Cs(I) experimental run is shown
 - Further analysis is under work

Outlook

- Further efficiency study and analysis of systematic effects
- Obtain rapidity and transverse momentum dependence of v₁ for experimental data
- Comparing results with existing data