Редкие процессы в фотон-фотонных соударениях с использованием пучков проекта комптоновского источника Национального центра физики и математики

Андреева А. Д., филиал МГУ им. Ломоносова в г. Сарове

Боос Э.Э., д.ф.-м.н., проф., член-корр. РАН

ЯДРО-2025, 1-6 июля, Санкт-Петербург

2 июля 2025 г.

Содержание

- 1 Введение
- 2 Обратный эффект Комптона
- 3 Сечение обратного комптоновского рассеяния
- 4 Спектр энергии комптоновских фотонов
- 5 Фотон-фотонное рассеяние в КЭД
- 6 Рождение резонансных скаляра и псевдоскаляра
- Заключение
- 8 Backup

Введение

В данной работе исследуются редкие процессы в фотон-фотонных соударениях, такие как фотон-фотонное рассеяние (рассеяние «света на свете») и рождение гипотетических скалярных и псевдоскалярных аксионоподобных частиц (АПЧ) с использованием фотонных пучков проекта будущего комптоновского источника ИКИ НЦФМ.

Мотивация данного исследования обусловлена тем, что фотон-фотонное рассеяние ранее не наблюдалось в диапазоне низких энергий в связи с малой вероятностью такого взаимодействия из-за низкого сечения рассеяния.

Обратный эффект Комптона

- α угол между импульсами электрона и фотона до рассеяния
- θ угол между импульсами начального электрона и рассеянного фотона
- Θ угол между импульсами начального фотона и рассеянного фотона

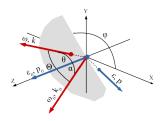


Рис. 1: Кинематика обратного комптоновского рассеяния

Предельный случай: $\alpha=\pi$. Тогда $\theta=0$ и $\Theta=\pi$

Выражение для энергии рассеянного фотона:

$$\omega_c = \frac{\left(\epsilon_0 + \sqrt{\epsilon_0^2 - m_e^2}\right)\omega_0}{\epsilon_0 - \sqrt{\epsilon_0^2 - m_e^2 + 2\omega_0}} \approx \frac{4\epsilon_0^2 \omega_0}{4\epsilon_0 \omega_0 + m_e^2}$$

Таблица 1: Значения энергий комптоновских фотонов на ИКИ НЦФМ

	ω_0 , ГэВ	ϵ_0 , ГэВ	ω_c , ГэВ	ω_{ref} , ГэВ	
	1.2e-9	0.07	9e-5	4.5e-5	
		0.1	1.8e-4	9.2e-5	
		0.5 4.5e-3		2.3e-3	
		1	1.8e-2	9e-3	
		1.5	4e-2	2e-2	
		2	7.1e-2	3.5e-2	
		2	7.1e-2	3.5e-2	

Сечение обратного комптоновского рассеяния

Дифференциальное сечение:

$$\frac{d\sigma_c}{dy} = \frac{2\pi\alpha^2}{\kappa m_e} \left[1 - y + \frac{1}{1-y} - \frac{4y}{\kappa(1-y)} \left(1 - \frac{y}{\kappa(1-y)} \right) - \underbrace{\xi_2 \zeta_\parallel}_{\kappa(1-y)} \cdot \frac{y}{1-y} \left(\frac{2y}{\kappa(1-y)} - 1 \right) (2-y) \right],$$

где $\kappa = \frac{4\epsilon_0\,\omega_0}{m^2}\sin^2\left(\frac{\alpha}{2}\right),\; y=\frac{\omega}{\epsilon_0},\; \xi_2,\; \zeta_\parallel$ — спиральность электронов и света.

Полное сечение:

$$\begin{split} \sigma_c &= \sigma_c^{np} + \xi_2 \zeta_\parallel \sigma_1 = \frac{2\pi\alpha^2}{\kappa m_e} \left[\left(1 - \frac{4}{\kappa} - \frac{8}{\kappa^2} \right) \ln(1+\kappa) + \frac{8}{\kappa} - \frac{1}{2(\kappa+1)^2} + \frac{1}{2} \right. \\ &\left. + \xi_2 \zeta_\parallel \cdot \left(\left(1 + \frac{2}{\kappa} \right) \ln(1+\kappa) + \frac{1}{\kappa+1} - \frac{1}{2(\kappa+1)} - \frac{5}{2} \right) \right], \end{split}$$

где $y < y_{max} = \frac{\kappa}{\kappa + 1}$.

Энергетический спектр:

$$f_c(y) = \frac{1}{\sigma_c} \cdot \frac{d\,\sigma_c}{dy}$$

Ginzburg I.F., Kotkin G.L., Panfil S.L. et al. Colliding γe and $\gamma \gamma$ beams based on single pass e^+e^- accelerators. Part 2: Polarization effects // Nucl. Instr. Meth. A (1984) Vol.219, P.5-24.

Спектр энергии комптоновских фотонов

$$f_{C}(y) = \frac{\left[1 - y + \frac{1}{1 - y} - \frac{4y}{\kappa(1 - y)} \left(1 - \frac{y}{\kappa(1 - y)}\right) - \xi_{2}\zeta_{\parallel} \cdot \frac{y}{1 - y} \left(\frac{2y}{\kappa(1 - y)} - 1\right) (2 - y)\right]}{\left[\left(1 - \frac{4}{\kappa} - \frac{8}{\kappa^{2}}\right) \ln(1 + \kappa) + \frac{8}{\kappa} - \frac{1}{2(\kappa + 1)^{2}} + \frac{1}{2} + \xi_{2}\zeta_{\parallel} \cdot \left(\left(1 + \frac{2}{\kappa}\right) \ln(1 + \kappa) + \frac{1}{\kappa + 1} - \frac{1}{2(\kappa + 1)} - \frac{5}{2}\right)\right]}$$

$$\frac{1}{\sigma_{C}} \frac{d\sigma_{C}}{dy}$$

$$50$$

$$45$$

$$40$$

$$-\xi_{2}\zeta_{\parallel} = -1$$

$$-\xi_{2}\zeta_{\parallel} = 1$$

$$-\xi_{2}\zeta_{\parallel} = 0$$

Рис. 2: Зависимость энергетического спектра комптоновского рассеяния при различных степенях поляризации света и электронного пучка для ИКИ НЦФМ, ϵ_0 = 2 ГэВ

Сечение фотон-фотонного рассеяния в КЭД

Дифференциальное сечение рассеяния в произвольной системе отсчета

$$\frac{d\sigma_{\mathsf{max}}}{d\Omega_3} = \frac{139 \cdot 64 \,\alpha E_1^4 E_2^4 \left(E_1^2 (-1 + \cos\theta_3)^2 + E_2^2 (1 + \cos\theta_3)^2 + E_1 E_2 (1 - \cos^2\theta_3)\right)^2}{(180\pi)^2 m_e^8 (E_1 + E_2 + (E_2 - E_1)\cos\theta_3)^6}$$

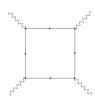
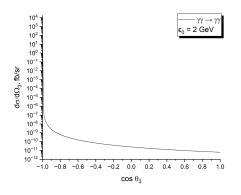
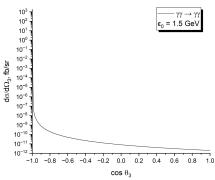
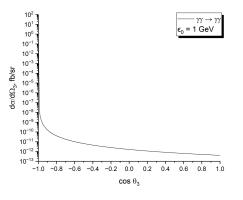
 $heta_3$ — угол вылета третьего фотона

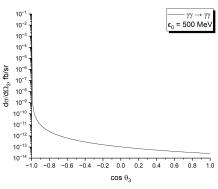
Интегральное сечение рассеяния:

$$\sigma_{\text{max}} = \frac{973\alpha^4 E_1^3 E_2^3}{10125\pi m^8}$$

Свертка со спектром комптоновских фотонов:

$$\sigma = \frac{973\alpha^4 E_1^3 E_2^3}{10125\pi m^8} \int_0^{\frac{\kappa}{\kappa+1}} dy \, \frac{\left(y^3 - y^4 + \frac{y^3}{1-y} - \frac{4y^4}{\kappa(1-y)} + \frac{4y^5}{\kappa^2(1-y)^2}\right)}{\left(\left(1 - \frac{4}{\kappa} - \frac{8}{\kappa^2}\right) \ln(1+\kappa) + \frac{8}{\kappa} - \frac{1}{2(\kappa+1)^2} + \frac{1}{2}\right)}$$


Рис. 3: Диаграмма фотон-фотонного рассеяния

Угловое распределение фотон-фотонного рассеяния

Параметры комптоновского источника

$$f_{
m rep} = 80 \cdot 10^6 \, {
m c}^{-1} \quad -$$
 частота столкновений пучков, $G < 5 \cdot 10^3 \, {
m cm}^{-2} \quad -$ геометрический фактор, $N_{ph} < 5.2 \cdot 10^{17}, \quad N_{\gamma} < 1 \cdot 10^7$

— выход первичных фотонов и фотонов от обратного комптоновского рассеяния за одно взаимодействие.

Светимость фотон-фотонных столкновений:

$$L_{\gamma,ph} = f_{rep} \cdot N_{ph} \cdot N_{\gamma} \cdot G < 2.1 \cdot 10^{36} \,\mathrm{cm}^{-2} \cdot \mathrm{c}^{-1}$$

Таблица 2: Сечение фотон-фотонного рассеяния и число событий в секунду на ИКИ НЦФМ

<i>E</i> ₁ , ГэВ	ϵ_0 , ГэВ	ω _{с.т.} , ГэВ	<i>√s</i> , ГэВ	$\sigma_{\it max}$, фб	σ , фб	N, c^{-1}
	0.07	2.2e-7	4.3e-7	9.4e-12	2.6e-12	5.4e-15
	0.1	3.1e-7	6.1e-7	8e-11	2.1e-11	4.6e-14
1.2e-9	0.5	1.5e-6	3.1e-6	1.2e-6	3.3e-7	7e-10
1.26-9	1	3.1e-6	6.1e-6	7.6e-5	2.1e-5	4.4e-8
	1.5	4.6e-6	9.1e-6	8.4e-4	2.3e-4	4.7e-7
	2	6.1e-6	1.2e-5	4.6e-3	1.3e-3	2.6e-6

Сечение рождения резонансных скаляра и псевдоскаляра

Лагранжианы взаимодействия с фотонами:

$$\mathcal{L}_{\text{int},s} = -\frac{1}{4} g_{s\gamma\gamma} s F^{\mu\nu} F_{\mu\nu}, \quad \mathcal{L}_{\text{int},a} = -\frac{1}{4} g_{a\gamma\gamma} a F^{\mu\nu} \tilde{F}_{\mu\nu},$$

где s, a — скалярное и псевдоскалярное поля, $F^{\mu\nu}$ — тензор электромагнитного поля, $g_{s\gamma\gamma}$, $g_{a\gamma\gamma}$ — константы взаимодействия, $\tilde{F}_{\mu\nu} = \frac{1}{2} \varepsilon_{\mu\nu\rho\sigma} F^{\rho\sigma}$.

Фейнмана:

$$s, a \rightarrow \gamma \gamma$$

Квадраты амплитуд рассеяния:

$$|M_{s,a}|^2 = g_{s,a\gamma\gamma}^2 \cdot 2(k_1 \cdot k_2)^2 = g_{s,a\gamma\gamma}^2 \cdot \frac{m_{s,a}^4}{2}$$

Ширина распада:

$$\Gamma_{s,a\to\gamma\gamma} = \frac{1}{64\pi} g_{s,a\gamma\gamma}^2 m_{s,a}^3$$

Сечение рассеяния:

ение рассеяния:
$$\sigma(\gamma\gamma\to s,a\to\gamma\gamma)=\int\limits_{\gamma_{\rm min}}^{\gamma_{\rm max}} dy\, f_c(y) \frac{4\pi^2}{m_{s,a}^3} \Gamma_{s,a\to\gamma\gamma} {\rm Br}(s,a\to\gamma\gamma)$$

Jikia G., Soldner-Rembold S. Light Higgs Production at a Photon Collider // arXiv preprint hep-ex/0101056. - 2001

Ограничения на параметры скаляра и псевдоскаляра

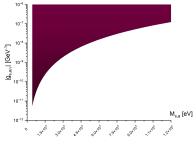


Рис. 5: Axion-photon coupling

Таблица 3: Зависимость массы и ширины распада скалярной и псевдоскалярной частицы от энергий фотонов и первичного электрона

<i>E</i> ₁ , ГэВ	ϵ_0 , ГэВ	<i>т_{s, a},</i> ГэВ	$\Gamma_{s,a o\gamma\gamma}$, ГэВ
	0.07	4.3e-7	9.2e-36
	0.1	6.1e-7	2.7e-35
1.2e-9	0.5	3.1e-6	3.3e-33
1.2e-9	1	6.1e-6	2.6e-32
	1.5	9.1e-6	8.7e-32
	2	1.2e-5	2e-31

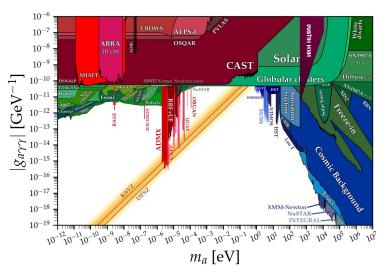


Рис. 6: Область ограничений для массы и константы связи псевдоскалярной частицы

Заключение

В рамках данного исследования была впервые получена формула для дифференциального сечения фотон-фотонного рассеяния в произвольной системе отсчета в низкоэнергетическом приближении. Получены угловые распределения и численные предсказания для сечения фотон-фотонного рассеяния и числа событий (выхода гамма-квантов). Определена область параметров (массы резонанса и константы связи с двумя фотонами), при которых сечение рождения скалярной и псевдоскалярной (аксионоподобной) частицы сравнивается с сечением фотон-фотонного рассеяния. Оказалось, что полученные параметры воспроизводят имеющиеся косвенные астрофизические ограничения. Реализация фотон-фотонных соударений с использованием фотонных пучков ИКИ НЦФМ позволила бы поставить прямые ограничения в области масс в районе 10 кэВ, являющиеся предпочтительными.

Спектр комптоновских фотонов при высоких энергиях электрона

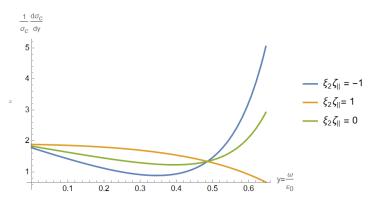


Рис. 7: Зависимость энергетического спектра комптоновского рассеяния при различных степенях поляризации света и электронного пучка при $\epsilon_0=100$ ГэВ, $\kappa=2.69$

Влияние поляризационных эффектов

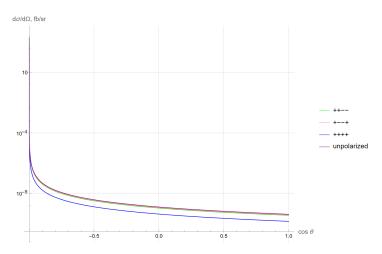


Рис. 8: Дифференциальное сечение фотон-фотонного рассеяния при различных спиральностях фотонов λ

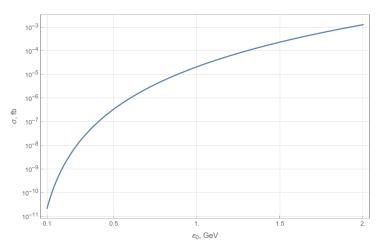


Рис. 9: Зависимость полного сечения фотон-фотонного рассеяния от энергии электронов ϵ_0