Редкие процессы в фотон-фотонных соударениях с использованием пучков проекта комптоновского источника Национального центра физики и математики

Андреева А. Д., филиал МГУ им. Ломоносова в г. Сарове

Боос Э.Э., д.ф.-м.н., проф., член-корр. РАН

ЯДРО-2025, 1-6 июля, Санкт-Петербург

2 июля 2025 г.

Содержание

Введение

- Обратный эффект Комптона
- Осечение обратного комптоновского рассеяния
- Опектр энергии комптоновских фотонов
- Фотон-фотонное рассеяние в КЭД
- 6 Рождение резонансных скаляра и псевдоскаляра
- 7 Заключение

8 Backup

В данной работы исследуются редкие процессы в фотон-фотонных соударениях, такие как фотон-фотонное рассеяние (рассеяние «света на свете») и рождение гипотетических скалярных и псевдоскалярных аксионоподобных (ALP) частиц с использованием фотонных пучков проекта будущего комптоновского источника ИКИ НЦФМ.

Мотивация данного исследования обусловлена тем, что фотон-фотонное рассеяние ранее не наблюдалось в диапазоне низких энергий в связи с малой вероятностью такого взаимодействия из-за низкого сечения рассеяния.

Обратный эффект Комптона

- *α* угол между импульсами электрона и фотона до рассеяния
- *θ* угол между импульсами начального электрона и рассеянного фотона
- Θ угол между импульсами начального фотона и рассеянного фотона

Рис. 1: Кинематика обратного комптоновского рассеяния

Предельный случай: $\alpha = \pi$. Тогда $\theta = 0$ и $\Theta = \pi$.

Выражение для энергии рассеянного фотона:

$$\omega = \frac{\left(\epsilon_0 + \sqrt{\epsilon_0^2 - m_e^2}\right)\omega_0}{\epsilon_0 - \sqrt{\epsilon_0^2 - m_e^2} + 2\omega_0} \approx \frac{4\epsilon_0^2\omega_0}{4\epsilon_0\omega_0 + m_e^2}$$

Таблица 1: Значения энергий комптоновских фотонов на ИКИ НЦФМ

ω ₀ , ГэВ	ϵ_0 , ГэВ	<i>ω_{max}</i> , ГэВ	<i>ω_{ch}</i> , ГэВ	
1.2e-9	0.07	9e-5	4.5e-5	
	0.1	1.8e-4	9.2e-5	
	0.5	4.5e-3	2.3e-3	
	1	1.8e-2	9e-3	
	1.5	4e-2	2e-2	
	2	7.1e-2	3.5e-2	

Сечение обратного комптоновского рассеяния

Дифференциальное сечение:

$$\frac{d\sigma_c}{dy} = \frac{2\pi\alpha^2}{\kappa m_e} \left[1 - y + \frac{1}{1 - y} - \frac{4y}{\kappa(1 - y)} \left(1 - \frac{y}{\kappa(1 - y)} \right) - \xi_2 \zeta_{\parallel} \cdot \frac{y}{1 - y} \left(\frac{2y}{\kappa(1 - y)} - 1 \right) (2 - y) \right],$$

где $\kappa = \frac{4\epsilon_0\omega_0}{m^2}\sin^2\left(\frac{\alpha}{2}\right), y = \frac{\omega}{\epsilon_0}, \xi_2, \zeta_{\parallel}$ — спиральность электронов и света.

Полное сечение:

$$\sigma_{c} = \sigma_{c}^{np} + \xi_{2} \zeta_{\parallel} \sigma_{1} = \frac{2\pi\alpha^{2}}{\kappa m_{e}} \left[\left(1 - \frac{4}{\kappa} - \frac{8}{\kappa^{2}} \right) \ln(1+\kappa) + \frac{8}{\kappa} - \frac{1}{2(\kappa+1)^{2}} + \frac{1}{2} + \xi_{2} \zeta_{\parallel} \cdot \left(\left(1 + \frac{2}{\kappa} \right) \ln(1+\kappa) + \frac{1}{\kappa+1} - \frac{1}{2(\kappa+1)} - \frac{5}{2} \right) \right],$$

где $y < y_{max} = \frac{\kappa}{\kappa+1}$.

Энергетический спектр:

$$f_c(y) = \frac{1}{\sigma_c} \cdot \frac{d\,\sigma_c}{dy}$$

Ginzburg I.F., Kotkin G.L., Panfil S.L. et al. Colliding ye and ry beams based on single pass e^+e^- accelerators. Part 2: Polarization effects // Nucl. Instr. Meth. A (1984) Vol.219, P.5-24.

Спектр энергии комптоновских фотонов

Рис. 2: Зависимость энергетического спектра комптоновского рассеяния при различных степенях поляризации света и электронного пучка для ИКИ НЦФМ, $\epsilon_0 = 2$ ГэВ

Сечение фотон-фотонного рассеяния в КЭД

Дифференциальное сечение рассеяния в произвольной системе отсчета

$$\frac{d\sigma_{\max}}{d\Omega_3} = \frac{139 \cdot 64 \,\alpha E_1^4 E_2^4 \left(E_1^2 (-1 + \cos\theta_3)^2 + E_2^2 (1 + \cos\theta_3)^2 + E_1 E_2 (1 - \cos^2\theta_3)\right)^2}{(180\pi)^2 m_e^8 (E_1 + E_2 + (E_2 - E_1)\cos\theta_3)^6}$$

 θ_3 — угол вылета третьего фотона

Интегральное сечение рассеяния:

$$\sigma_{\max} = \frac{973\alpha^4 E_1^3 E_2^3}{10125\pi m^8}$$

Свертка со спектром комптоновских фотонов:

$$\sigma = \frac{973\alpha^4 E_1^3 E_2^3}{10125\pi m^8} \int_0^{\frac{\kappa}{\kappa+1}} dy \, \frac{\left(y^3 - y^4 + \frac{y^3}{1-y} - \frac{4y^4}{\kappa(1-y)} + \frac{4y^5}{\kappa^2(1-y)^2}\right)}{\left(\left(1 - \frac{4}{\kappa} - \frac{8}{\kappa^2}\right)\ln(1+\kappa) + \frac{8}{\kappa} - \frac{1}{2(\kappa+1)^2} + \frac{1}{2}\right)}$$

Рис. 3: Диаграмма фотон-фотонного рассеяния

Угловое распределение фотон-фотонного рассеяния

Параметры комптоновского источника

 $f_{
m rep} = 80 \cdot 10^6 \, {
m c}^{-1}$ — частота столкновений пучков, $G < 5 \cdot 10^3 \, {
m cm}^{-2}$ — геометрический фактор, $N_{ph} < 5.2 \cdot 10^{17}, \quad N_{\gamma} < 1 \cdot 10^7$

 — выход первичных фотонов и фотонов от обратного комптоновского рассеяния за одно взаимодействие.

Светимость фотон-фотонных столкновений:

$$L_{\gamma,ph} = f_{rep} \cdot N_{ph} \cdot N_{\gamma} \cdot G < 2.1 \cdot 10^{36} \,\mathrm{cm}^{-2} \cdot \mathrm{c}^{-1}$$

Таблица 2: Сечение фотон-фотонного рассеяния и число событий в секунду на ИКИ НЦФМ

<i>Е</i> 1, ГэВ	ϵ_0 , ГэВ	<i>ω_{с.т.},</i> ГэВ	<i>√s</i> , ГэВ	σ_{max} , фб	σ , фб	N, c ⁻¹
1.2e-9	0.07	2.2e-7	4.3e-7	9.4e-12	2.6e-12	5.4e-15
	0.1	3.1e-7	6.1e-7	8e-11	2.1e-11	4.6e-14
	0.5	1.5e-6	3.1e-6	1.2e-6	3.3e-7	7e-10
	1	3.1e-6	6.1e-6	7.6e-5	2.1e-5	4.4e-8
	1.5	4.6e-6	9.1e-6	8.4e-4	2.3e-4	4.7e-7
	2	6.1e-6	1.2e-5	4.6e-3	1.3e-3	2.6e-6

Сечение рождения резонансных скаляра и псевдоскаляра

Лагранжианы взаимодействия с фотонами:

$$\mathcal{L}_{\text{int},s} = -\frac{1}{4} g_{s\gamma\gamma} s F^{\mu\nu} F_{\mu\nu}, \quad \mathcal{L}_{\text{int},a} = -\frac{1}{4} g_{a\gamma\gamma} a F^{\mu\nu} \tilde{F}_{\mu\nu},$$

где s, a — скалярное и псевдоскалярное поля, $F^{\mu\nu}$ — тензор электромагнитного поля, $g_{s\gamma\gamma}$, $g_{a\gamma\gamma}$ — константы взаимодействия, $\tilde{F}_{\mu\nu} = \frac{1}{2} \varepsilon_{\mu\nu\rho\sigma} F^{\rho\sigma}$.

Квадраты амплитуд рассеяния:

$$\left|M_{s,a}\right|^{2} = g_{s,a\gamma\gamma}^{2} \cdot 2(k_{1} \cdot k_{2})^{2} = g_{s,a\gamma\gamma}^{2} \cdot \frac{m_{s,a\gamma\gamma}^{4}}{2}$$

s,
$$a \rightarrow \gamma \gamma$$

Ширина распада:

C

$$\Gamma_{s,a\to\gamma\gamma} = \frac{1}{64\pi} g_{s,a\gamma\gamma}^2 m_{s,a}^3$$

ечение рассеяния:

$$\sigma(\gamma\gamma \to s, a \to \gamma\gamma) = \int_{y_{\min}}^{y_{\max}} dy f_c(y) \frac{4\pi^2}{m_{s,a}^3} \Gamma_{s,a \to \gamma\gamma} Br(s, a \to \gamma\gamma)$$

Jikia G., Soldner-Rembold S. Light Higgs Production at a Photon Collider // arXiv preprint hep-ex/0101056. – 2001

Андреева А. Д.

Рис. 5: Axion-photon coupling

Таблица 3: Зависимость массы и ширины распада скалярной и псевдоскалярной частицы от энергий фотонов и первичного электрона

<i>Е</i> 1, ГэВ	ϵ_0 , ГэВ	<i>т_{s, a},</i> ГэВ	$\Gamma_{s,a \to \gamma \gamma}$, ГэВ
1.2e-9	0.07	4.3e-7	9.2e-36
	0.1	6.1e-7	2.7e-35
	0.5	3.1e-6	3.3e-33
	1	6.1e-6	2.6e-32
	1.5	9.1e-6	8.7e-32
	2	1.2e-5	2e-31

Рис. 6: Область ограничений для массы и константы связи псевдоскалярной частицы

В рамках данного исследования была впервые получена формула для дифференциального сечения фотон-фотонного рассеяния в произвольной системе отсчета в низкоэнергетическом приближении, численно получены сечение фотон-фотонного рассеяния, число событий (выход гамма-квантов) и определена область параметров (массы и константы связи с двумя фотонами), при которых сечение рождения скалярной и псевдоскалярной (аксионоподобной) частицы сравнивается с сечением фотон-фотонного рассеяния. Оказалось, что полученные параметры воспроизводят имеющиеся косвенные астрофизические ограничения. Реализация фотон-фотонных соударений с использованием фотонных пучков ИКИ НЦФМ позволила бы поставить прямые ограничения в области масс порядка 6-12 кэВ. являющиеся предпочтительными.

Спектр комптоновских фотонов при высоких энергиях электрона

Рис. 7: Зависимость энергетического спектра комптоновского рассеяния при различных степенях поляризации света и электронного пучка при $\epsilon_0 = 100$ ГэВ, $\kappa = 2.69$

Влияние поляризационных эффектов

Рис. 8: Дифференциальное сечение фотон-фотонного рассеяния при различных спиральностях фотонов λ

Рис. 9: Зависимость полного сечения фотон-фотонного рассеяния от энергии электронов ϵ_0