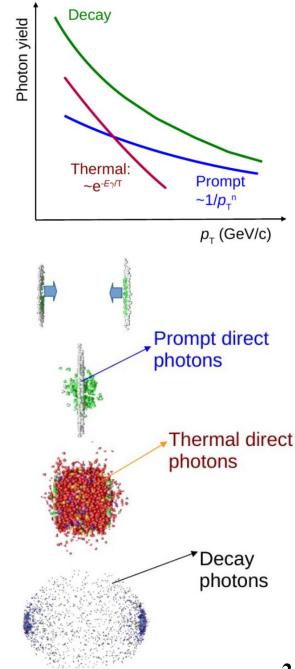


Direct photon production in p-Pb collisions measured with ALICE/PHOS

Dmitry Averyanov for the ALICE Collaboration

NRC "Kurchatov Institute", Russia


LXXV International Conference «NUCLEUS – 2025. Nuclear physics, elementary particle physics and nuclear technologies»

Moscow, July 1-6, 2025

Direct photons

- **Direct photons** photons not originating from hadronic decays (unlike <u>decay photons</u>).
- No strong final-state interactions → information about all stages of the collision
- Experimentally, only the total photon spectrum can be measured

- High $p_T =$ **prompt direct photons** (from initial hard scatterings between partons) test of initial conditions:
 - $\circ~N_{
 m coll}$ scaling and PDF modification
- Low $p_T =$ thermal direct photons (from hot matter thermal radiation) test of hot matter evolution:
 - Spectrum → temperature and Collective flow

ALICE detector setup

Electromagnetic calorimeter

(EMCal) + DCal

Pb-scintillator sampling calorimeter

Cell size $-6 \times 6 \text{ cm}^2$

(large acceptance)

 $|\eta| < 0.7, 80^{\circ} < \varphi < 187^{\circ}$

Different techniques are combined to achieve excellent precision and $p_{\rm T}$ range.

Run:266438

Timestamp:2016-11-26 17:56:16(UTC)

Svstem: Pb-p

Eneray: 8.16 TeV EMCal L1 gamma and jet triggered event ALICE

Using photon conversion probability (~ 8%) in detector material

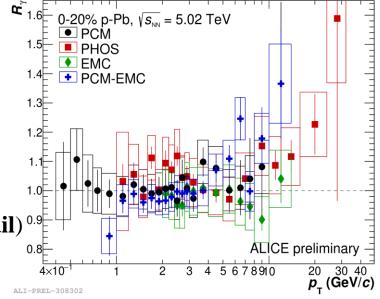
ITS + TPC: $|\eta| < 0.9, 0^{\circ} < \varphi < 360^{\circ}$

Charged-Particle Veto (CPV)

- Used for photon identification
- 2 additional CPV modules were installed prior to Run 3

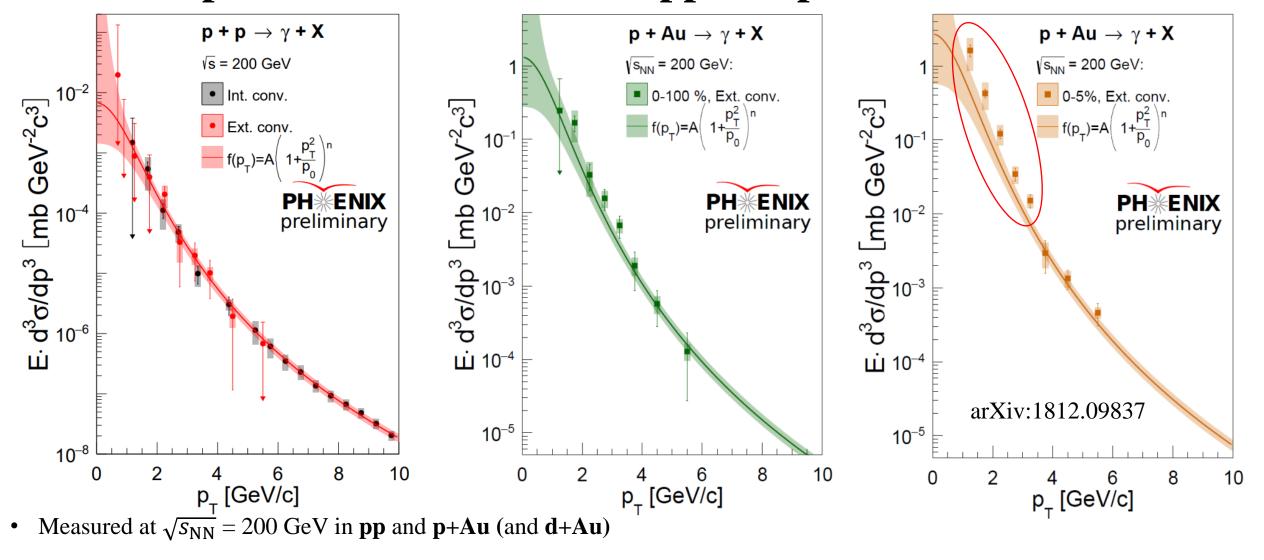
PHOS calorimeter

- PbWO₄ crystals
- High granularity $(2.2 \times 2.2 \text{ cm}^2)$ cell size)
- $|\eta| < 0.12, 260^{\circ} < \varphi < 320^{\circ}$

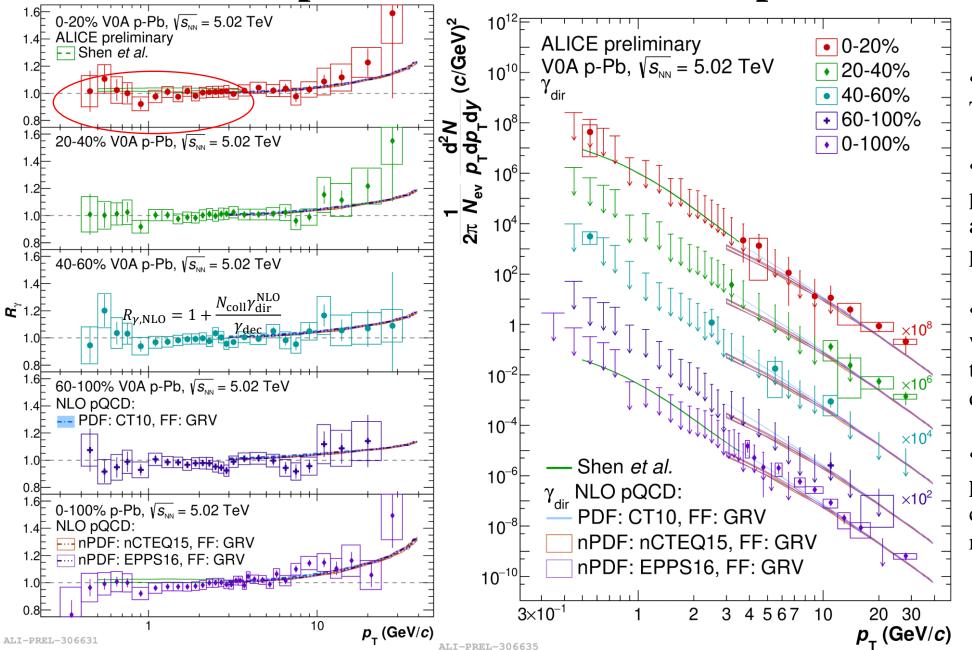


Direct photon subtraction method

• Subtraction method:
$$N_{\gamma_{\text{direct}}} = N_{\gamma}^{\text{incl}} - N_{\gamma}^{\text{decay}} = \left(1 - \frac{1}{R_{\gamma}}\right) N_{\gamma}^{\text{incl}}$$

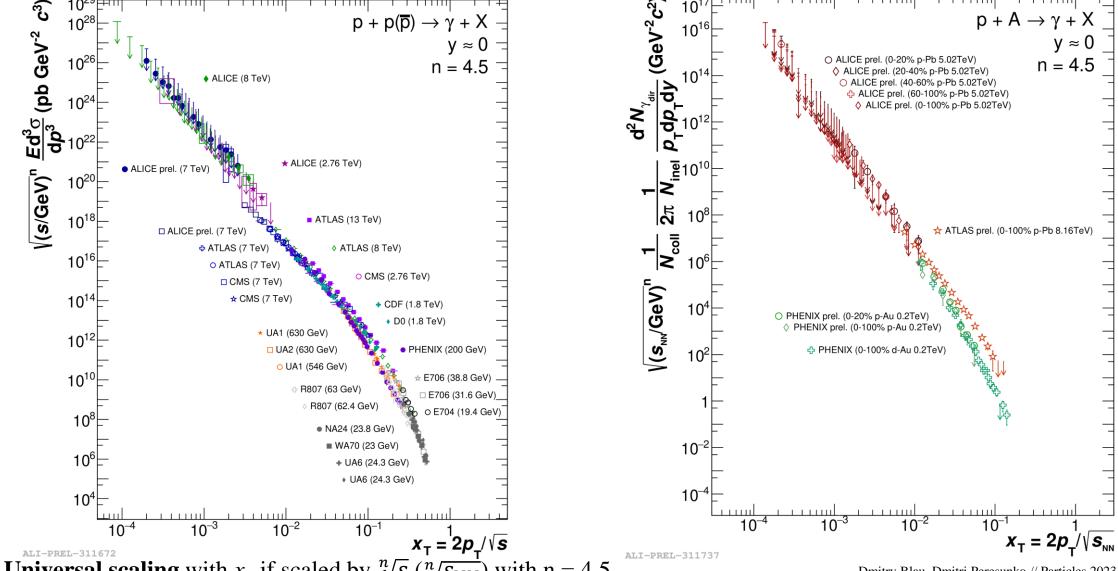

$$R_{\gamma} = \frac{N_{\gamma}^{\rm incl}}{N_{\gamma}^{\rm decay}} \approx \left(\frac{N_{\gamma}^{\rm incl}}{N_{\gamma_{\pi^0}}}\right)_{\rm measured} / \left(\frac{N_{\gamma}^{\rm decay}}{N_{\gamma_{\pi^0}}}\right)_{\rm simulated}$$

- **Inclusive photons** = all photons produced (decay + direct)
- Decay photons = decay simulation from measured/ $m_{\rm T}$ -scaled hadron spectra (**cocktail**) ^{0.9}
- Double ratio $(R_{\gamma}) \rightarrow$ cancel some large systematic uncertainties


- Different methods (PCM, PHOS, EMC) statistically and systematically uncorrelated and produce consistent results.
- Systematic uncertainties of individual measurements are mostly p_T -independent.

Direct photon measurements in pp and p—Au with PHENIX

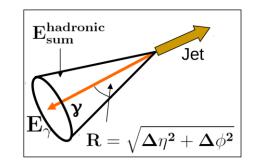
- In pp and 0-100% p+Au collisions there is **no visible excess** of thermal photons at **low** p_T
- However in 0-5% p+Au with the highest multiplicity there is a hint for excess of direct photons at low $p_T < 4 \text{ GeV/}c$.


Direct photon measurements in p-Pb with ALICE

- Measured at $\sqrt{s_{NN}} = 5.02$ TeV in 4 multiplicity classes
- At **high** p_T **excess** of prompt photons, in agreement with the NLO pQCD calculations.
- Even in the class 0-20% with the highest multiplicity there is **no visible excess** of direct photons at **low** $p_{\rm T}$.
- Need to carry out **more precise measurements** to confirm or exclude thermal radiation in p—Pb collisions.

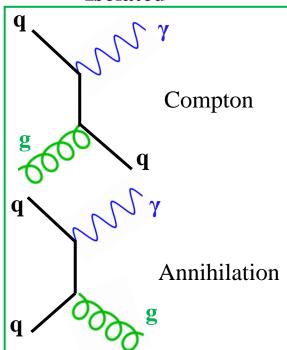
6

Compilation of direct photon measurements

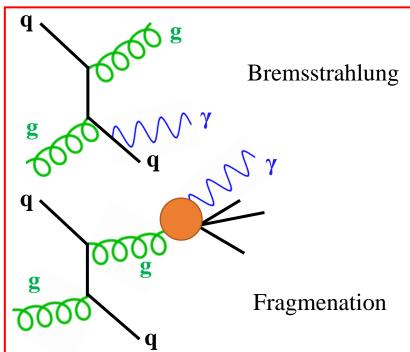


• Universal scaling with x_T if scaled by $\sqrt[n]{s}$ ($\sqrt[n]{s_{NN}}$) with n = 4.5

- Dmitry Blau, Dmitri Peresunko // Particles 2023, 6(1), 173-187
- **Direct photon** results from different experiments are included (both published and preliminary)
- In \mathbf{p} - $\mathbf{P}\mathbf{b}$ collisions data are aligned on a **common** x_{T} **curve, however, not as clear scaling** as in pp collisions

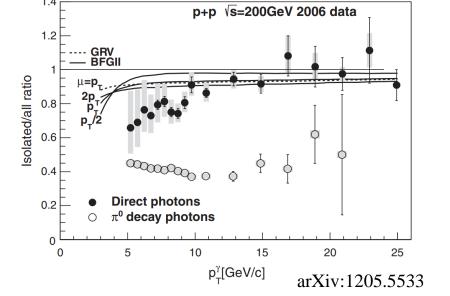

Isolated photons

- **Isolated photons** photons with no hadron activity in cone with radius $R \sim 0.4$
- Can be measured in event-by event basis
- Cannot be measured at low $p_{\rm T}$ due to rapid purity decrease (< 5 GeV/c in PHENIX and < 10-20 GeV/c in ALICE)

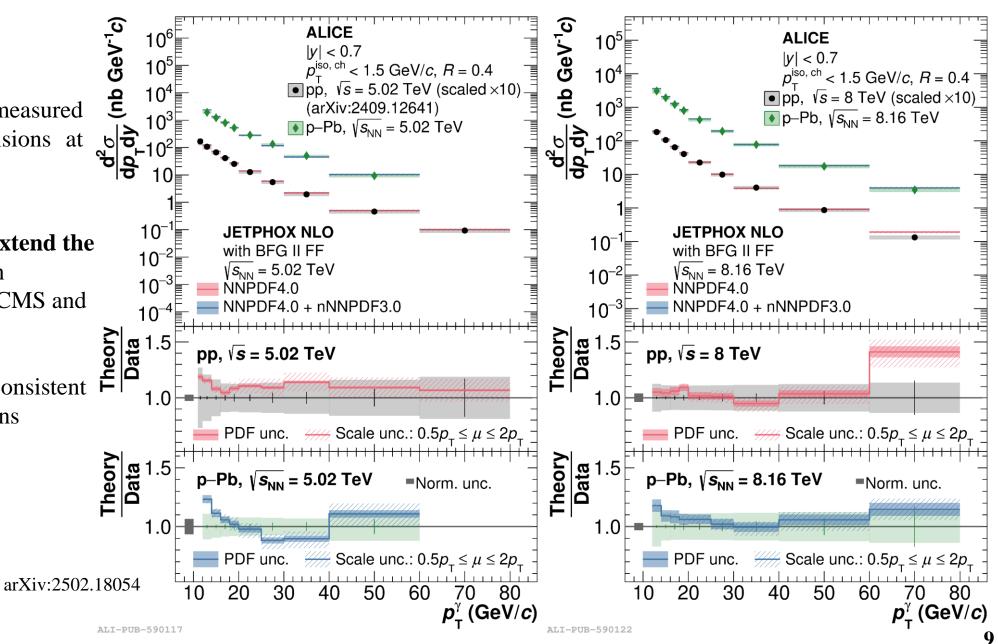



• Almost no difference between direct and isolated photons at high p_T

Isolated



Non-isolated


LHC, pp $\rightarrow \gamma$ + X @ \sqrt{s} =14 TeV, y=0

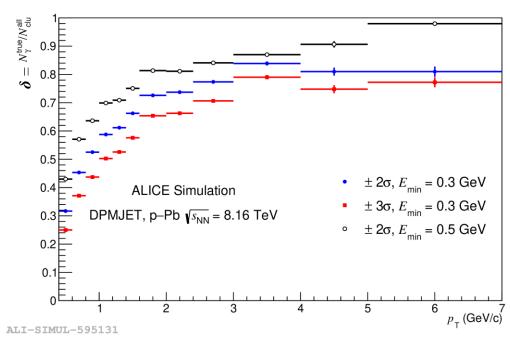
Isolated photon measurements in p-Pb with ALICE

• Isolated photons were measured in ALICE in **p–Pb** collisions at **5.02** and **8.16 TeV**

- ALICE measurements extend the *p*_T range to lower values in comparison with previous CMS and ATLAS measurements
- The measurements are consistent with NLO pQCD predictions

- In this approach photons having a pair with the π^0 mass are excluded from the spectrum <u>in each event</u> (unlike in the subtraction method) leaving the spectrum of photons not having a partner in the calorimeter acceptance from π^0 decays. After such a procedure **additional corrections** (δ , α , β) are introduced.
- This method helps to avoid subtracting two close big numbers, which **reduces the systematic uncertainty**.
- To compare results of subtraction and tagging methods R_{ν} is constructed:

$$R_{\gamma} = \frac{N_{\gamma}^{\rm incl}}{N_{\gamma}^{\rm decay}} = \frac{N_{\gamma}^{\rm incl}}{N_{\gamma}^{\rm tag}} \cdot \frac{\alpha}{\delta} \cdot \frac{P\epsilon}{1+\beta} \quad -\text{where } P - \text{purity, } \epsilon - \text{PID efficiency}$$

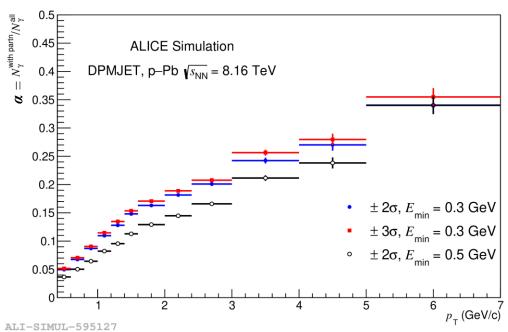

- In this approach photons having a pair with the π^0 mass are excluded from the spectrum <u>in each event</u> (unlike in the subtraction method) leaving the spectrum of photons not having a partner in the calorimeter acceptance from π^0 decays. After such a procedure **additional corrections** (δ , α , β) are introduced.
- This method helps to avoid subtracting two close big numbers, which **reduces the systematic uncertainty**.
- To compare results of subtraction and tagging methods R_{ν} is constructed:

$$R_{\gamma} = \frac{N_{\gamma}^{\rm incl}}{N_{\gamma}^{\rm decay}} = \frac{N_{\gamma}^{\rm incl}}{N_{\gamma}^{\rm tag}} \cdot \frac{\alpha}{\delta} \cdot \frac{P\epsilon}{1+\beta} \quad -\text{where } P - \text{purity, } \epsilon - \text{PID efficiency}$$

• Corrections:

• δ – the proportion of "true" tags, i.e. correction for the **fake pairs**

• Tagging method is **effective** when acceptance of the calorimeter is sufficiently large compared to the π^0 decay opening angle and cluster multiplicity is so low that correction for the fake pairs is small, i.e. **in pp and p–Pb collisions**.

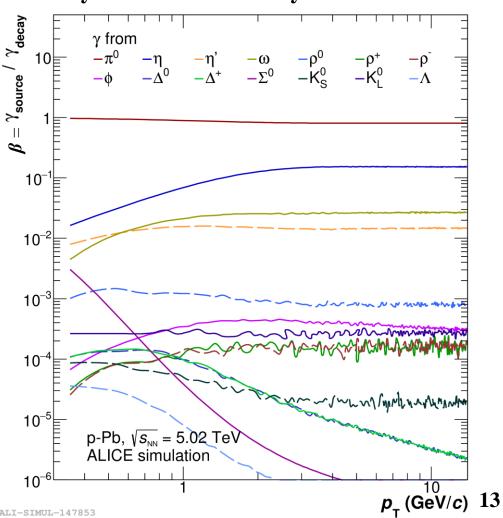


- In this approach photons having a pair with the π^0 mass are excluded from the spectrum <u>in each event</u> (unlike in the subtraction method) leaving the spectrum of photons not having a partner in the calorimeter acceptance from π^0 decays. After such a procedure **additional corrections** (δ , α , β) are introduced.
- This method helps to avoid subtracting two close big numbers, which **reduces the systematic uncertainty**.
- To compare results of subtraction and tagging methods R_{ν} is constructed:

$$R_{\gamma} = \frac{N_{\gamma}^{\text{incl}}}{N_{\gamma}^{\text{decay}}} = \frac{N_{\gamma}^{\text{incl}}}{N_{\gamma}^{\text{tag}}} \cdot \frac{\alpha}{\delta} \cdot \frac{P\epsilon}{1+\beta} \quad -\text{where } P - \text{purity, } \epsilon - \text{PID efficiency}$$

• Corrections:

• α – the proportion of photons from π^0 decays having the partner outside the calorimeter acceptance or the partner being too soft or **not being detected** for the other reasons

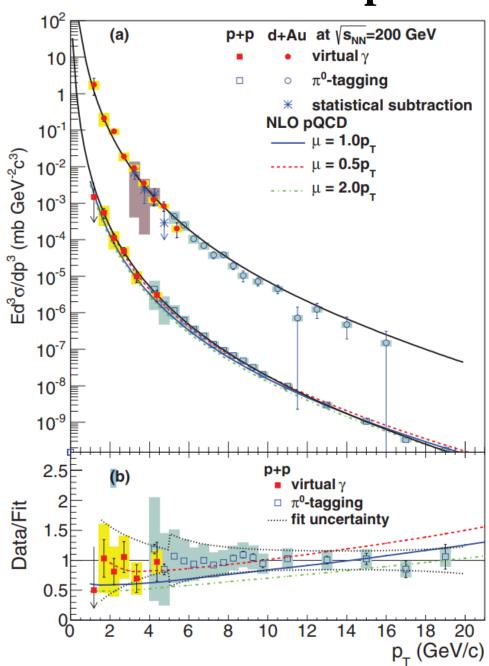


- In this approach photons having a pair with the π^0 mass are excluded from the spectrum in each event (unlike in the subtraction method) leaving the spectrum of photons not having a partner in the calorimeter acceptance from π^0 decays. After such a procedure **additional corrections** (δ , α , β) are introduced.
- This method helps to avoid subtracting two close big numbers, which **reduces the systematic uncertainty**.
- To compare results of subtraction and tagging methods R_{ν} is constructed:

$$R_{\gamma} = \frac{N_{\gamma}^{\rm incl}}{N_{\gamma}^{\rm decay}} = \frac{N_{\gamma}^{\rm incl}}{N_{\gamma}^{\rm tag}} \cdot \frac{\alpha}{\delta} \cdot \frac{P\epsilon}{1+\beta} \quad -\text{where } P - \text{purity, } \epsilon - \text{PID efficiency}$$

Corrections:

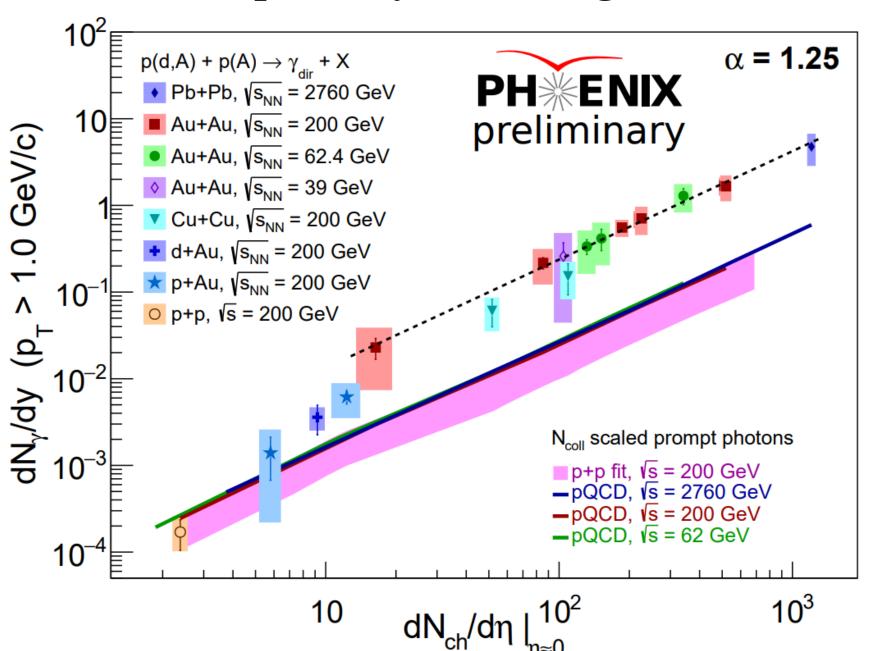
 β – correction for η meson and heavier hadron decay contribution (cocktail)


Conclusion

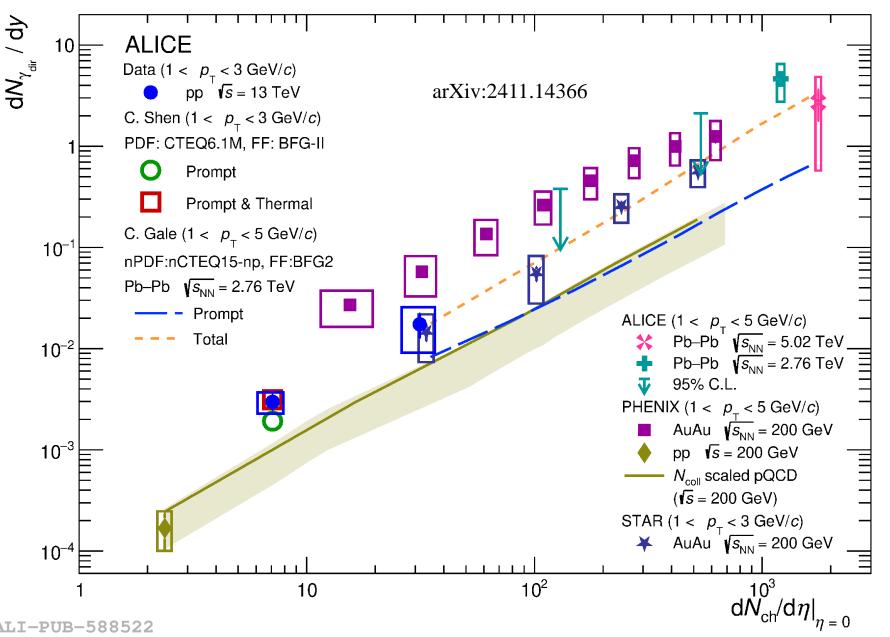
- **Direct photon spectra** were measured in **p–Pb** collisions at $\sqrt{s_{\rm NN}} = 5.02$ **TeV** in ALICE in Run 1+2 in the range 400 MeV $< p_{\rm T} < 40$ GeV with different methods (real photons via PHOS, EMC, PCM and isolated photons) in various centrality classes and compared to the results obtained at $\sqrt{s_{\rm NN}} = 200$ GeV in PHENIX. However, the measurements via dileptons and via Bose-Einstein correlations are still to be done.
- In ALICE in p-Pb collisions no significant thermal photon excess is observed ($p_T < 2-3 \text{ GeV/}c$). The yield of prompt photons ($p_T > 7 \text{ GeV/}c$) is in good agreement with the NLO pQCD calculations. In comparison, in PHENIX, there is visible excess of direct photons at low $p_T < 4 \text{ GeV/}c$.
- The first results from the developed **direct photon tagging method** for p–Pb collisions at $\sqrt{s_{NN}} = 8.16$ TeV look promising.

Thank you for your attention!

Backup


Direct photon measurements with PHENIX

- Measured at **200 GeV** in **pp** and **d**+**Au** collisions with different methods (the most straightforward **subtraction method**, **tagging method**, via **virtual photons**/dilepton pairs)
- **Consistent results** from different methods


arXiv:1208.1234v1

Direct photon yield scaling in PHENIX

arXiv:1812.09837

Direct photon yield scaling in PHENIX, STAR and ALICE

- Power-law dependence of direct photon yield $(dN_{\gamma_{\rm dir}}/dy)$ on charged particle multiplicity $(dN_{\rm ch}/d\eta|_{\eta=0})$ suggests production independent of energy or centrality
- Improved results in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV (real photons) and 5.02 TeV (virtual photons)
- Recent results in pp collisions at $\sqrt{s} = 13 \text{ TeV}$ (virtual photons)
- All three ALICE measurements **agree** with both STAR and PHENIX and with model predictions

19