НОВЫЕ ВОЗМОЖНОСТИ ЙОДНОГО ДЕТЕКТОРА ПРИ РЕГИСТРАЦИИ УСКОРИТЕЛЬНЫХ И СОЛНЕЧНЫХ НЕЙТРИНО

NEW CAPABILITIES OF IODINE DETECTOR IN REGISTRATION OF ACCELERATOR AND SOLAR NEUTRINOS

<u>Ю.С. Лютостанский</u>, А.Н. Фазлиахметов, Г.А. Коротеев, А.П. Осипенко, В.Н. Тихонов

Национальный Исследовательский Центр "Курчатовский институт"

75=я Международная конференция "ЯДРО-2025" Физика атомного ядра и элементарных частиц. Ядерно-физические технологии.

Санкт-Петербург, Россия. 1-6 июля 2025 года

Взаимодействие нейтрино с ядрами

$$\begin{split} \nu_{e} + A(N,Z) &\to e^{-} + A(N-1,Z+1) \\ \sigma_{discr}(E_{\nu}) &= \frac{1}{\pi} \sum_{k} G^{2} p_{e} E_{e} F(Z,E_{e}) [B(F)_{k} + (\frac{g_{A}}{g_{V}})^{2} B(GT)_{k}] \\ \hline \\ \text{кинематический} \\ \text{член} \\ \end{split}$$
 Ферми-функция: кулоновское взаимодействие е⁻ с полем ядра
 Комбинация ядерных матричных элементов, характеризующих интенсивность перехода

Переходы Ферми: $\Delta I = 0$

$$\sigma_{total}(E_{\nu}) = \sigma_{diskr}(E_{\nu}) + \sigma_{res}(E_{\nu})$$

 $\sum B(F) = N - Z$

 $\sigma_{res}(E_{\nu}) = \frac{g_A^2}{\pi} \int_{\varepsilon_{min}}^{\varepsilon_{max}} G^2 p_e E_e F(Z, E_e) S(E) dE$

Переходы Гамова-Теллера: $\Delta I = 0, \pm 1$ $\Sigma B(GT) = 3(N - Z)$

ЗАРЯДОВО-ОБМЕННЫЕ РЕЗОНАНСЫ В РЕАКЦИИ ¹²⁷I(*v*,*e*)¹²⁷Xe

Заряженная ($\Delta Q = +1$) ветвь возбуждения в реакции ${}^{127}I(v,e){}^{127}Xe$. В ядре ${}^{127}Xe$. обозначены Гамов-Теллеровский (GTR), аналоговый (AR) и три пигми резонанса (PR1, PR2, PR3).

Зарядово-Обменная Силовая Функция Реакции ¹²⁷I(*p*,*n*)¹²⁷Xe

Гистограмма – эксперимент: М. Palarczyk, et. al. Phys. Rev. 1999. V. 59. P. 500;

Solar Neutrino Spectrum (Bahcall J. N.)

Solar Neutrino Spectrum (Bahcall J. N.)

6

Спектр Ускорительных Нейтрино

PHYSICAL REVIEW D 106, 032003 (2022) D. Akimov, P. An, C. Awe, P. S. Barbeau, et all. "Simulating the neutrino flux from the Spallation Neutron Source for the COHERENT experiment."

ЗАРЯДОВО-ОБМЕННЫЕ РЕЗОНАНСЫ В РЕАКЦИИ ¹²⁷I(*v*,*e*)¹²⁷Xe

Заряженная ($\Delta Q = +1$) ветвь возбуждения в реакции ¹²⁷I(v,e)¹²⁷Xe. В ядре ¹²⁷Xe. обозначены Гамов-Теллеровские (GTR1 и GTR2), аналоговые (AR) и три пигми резонанса (PR1, PR2, PR3).

TFFS METHOD of CALCULATIONS

$$\begin{split} V_{pn} &= e_q V_{pn}^{\omega} + \sum_{p'n'} F_{np,n'p'}^{\omega} \rho_{p'n'} \qquad V_{pn}^h = \sum_{p'n'} F_{np,n'p'}^{\omega} \rho_{p'n'}^h \\ d_{pn}^1 &= \sum_{p'n'} F_{np,n'p'}^{\xi} \varphi_{p'n'}^1 \qquad d_{pn}^2 = \sum_{p'n'} F_{np,n'p'}^{\xi} \varphi_{p'n'}^2 \\ 3 \text{десь } V_{pn'}, V_{pn}^h \text{-}$$
эффективные поля квазичастиц и дырок в ядре; V_{pn}^{ω} - внешнее зарядово-обменное поле; d_{pn}^1 , d_{pn}^2 - эффективные вершины, описывающие изменение спаривательной щели Δ во внешнем поле (они пренебрежимо малы), F^{ω} и F^{ξ} - амплитуды эффективного нуклон-нуклонного взаимодействия ; ρ , ρ^h , φ^1 и φ^2 - соответствующие переходные плотности (подробнее см. **[1, 2]**).

- [1] I. N. Borzov, S. A. Fayans, E. L. Trykov. Nucl. Phys. A 584, p. 335 (1995).
- [2] А. Б. Мигдал. *Теория конечных ферми-систем и свойства атомных ядер*. М.: Наука, 1983.

Система уравнений для эффективного поля (λ – представление)

Для расчетов зарядово-обменных возбуждений ядер использовалась теория конечных фермисистем А. Б. Мигдала, в которой параметры изобарических состояний находятся из решения системы уравнений для $\frac{\Gamma - T \Pi PABUJIA OTFOPA: \Delta j = 0; \pm 1}{\Delta j = +1}$ эффективного поля Гамов-Теллеровского типа: $\frac{\Delta j = +1}{\Delta j = -1}$; $j = l - 1/2 \rightarrow j = l - 1/2$

$$V_{\lambda\lambda'} = V_{\lambda\lambda'}^{\omega} + \sum_{\lambda_{1}\lambda_{2}} \Gamma_{\lambda\lambda'\lambda_{1}\lambda_{2}}^{\omega} A_{\lambda_{1}\lambda_{2}} V_{\lambda_{2}\lambda_{1}} + \sum_{\nu_{1}\nu_{2}} \Gamma_{\lambda\lambda'\nu_{1}\nu_{2}}^{\omega} A_{\nu_{1}\nu_{2}} V_{\nu_{2}\nu_{1}};$$

$$V_{\nu\nu'} = \sum_{\lambda_{1}\lambda_{2}} \Gamma_{\nu\nu'\lambda_{1}\lambda_{2}}^{\omega} A_{\lambda_{1}\lambda_{2}} V_{\lambda_{2}\lambda_{1}} + \sum_{\nu_{1}\nu_{2}} \Gamma_{\nu\nu'\nu_{1}\nu_{2}}^{\omega} A_{\nu_{1}\nu_{2}} V_{\nu_{2}\nu_{1}};$$

$$V^{\omega} = e_{q} \sigma \tau^{+}; \quad A_{\lambda\lambda'}^{(p\bar{n})} = \frac{n_{\lambda}^{n} (1 - n_{\lambda'}^{p})}{e_{\lambda}^{n} - e_{\lambda'}^{p} + \omega}; \quad A_{\lambda\lambda'}^{(n\bar{p})} = \frac{n_{\lambda}^{p} (1 - n_{\lambda'}^{n})}{e_{\lambda}^{p} - e_{\lambda'}^{n} - \omega}.$$

Использовалось локальное взаимодействие F ⁽¹⁾ (Ландау-Мигдал):

 $F^{\omega} = C_0 (f_0' + g_0' \sigma_1 \sigma_2) \tau_1 \tau_2 \,\delta(r_1 - r_2)$

где константы: f_0' спин-спинового и g_0' спин-изоспинового взаимодействия квазичастиц, являются феноменологическими параметрами. $f_0'=1.35, g_0'=1.22.$

Матричный элемент M_{GT} : $M_{GT}^2 = \sum_{\lambda_1 \lambda_2} \chi_{\lambda_1 \lambda_2} A_{\lambda_1 \lambda_2} V_{\lambda_1 \lambda_2}^{\sigma}$ Для парциальных силовых функций получаем: $S_{\beta}^i(E) = M_i^2 \frac{\tilde{A}_i}{(E - \omega_i)^2 + \tilde{A}_i^2}$

Ширина Γ_i согласно Мигдалу определяется соотношением: $\Gamma = -2$ Im $[\sum (\varepsilon + iI)]$ или $\Gamma = \alpha \ge \varepsilon |\varepsilon| + \beta \varepsilon^3 + \gamma \varepsilon^2 |\varepsilon| + O(\varepsilon^4)...,$ где $\Gamma_i(\omega_i) = 0,018 \omega_i^2$ МэВ

Charge-Exchange Strength Function of Reaction $^{127}I(p,n)^{127}Xe$

GTR1 and GTR2 – Gamow-Teller resonances; PR1, PR2, PR3 – pygmy resonances.

QUENCHING EFFECT for ¹²⁷Xe

- 1 Гистограмма эксперимент: М. Palarczyk, et. al. Phys. Rev. 1999. V. 59. P. 500;
- 2 линия ТКФС расчет с е_а= 0.9 ;

3 - пунктир – численный расчет: Yu.S. Lutostansky, N.B. Shulgina. Phys. Rev. Lett. 1991. V. 67. P. 430; e_a= **0.8**

QUENCHING EFFECT – THEORY

Правило сумм для Гамов-Теллеровских возбуждений: $\Sigma (M_{GT})^2 = 3 (N - Z)$ (1)

В ТКФС правило сумм:
$$I(E_{\max}) = \int_{0}^{E_{\max}} S_{\beta}(E) dE = e_q^2 \cdot 3(N-Z)$$
 при $E_{\max} = \infty$ (2)

Т. е. $e_q^2 = 1 - q$, где q — недобор в правиле сумм, который в эксперименте зависит от E_{max} .

Согласно А.Б. Мигдалу эффективный заряд для поля фермиевского типа $e_q = e_q[\tau] = 1;$ эффективный заряд для поля Гамов-Теллеровского типа равен:

$$e_{q} = e_{q}[\sigma\tau] = 1 - 2\zeta_{s}, \ (\zeta_{s} \le 0.1)$$
 (3)

Константа ζ_s пока не вычисляется и может быть найдена из эксперимента.

Расчеты для ⁷¹Ge при
$$E_{\text{max}}$$
 = 50 МэВ дали e_q = 0.90 или q = 0.19 и ζ_s = 0.050. (4)

Расчеты для ¹²⁷Хе при E_{max} = 50 МэВ дали e_{q} = 0.95 или q = 0.10 и ζ_{s} = 0.025. (5)

Влияние пионной моды также связано с Quenching – эффектом и приводит к эффективной перенормировке константы g_0' :

$$g_{0}'_{0} = g_{0}' - e_{q}^{2} f_{\pi}^{2} \frac{dn}{d\mu} \chi^{-2} \left(\frac{q^{2}}{1+q^{2}} + \frac{4\chi}{\pi m_{\pi} R} (1+q^{2})^{-2} \right)$$

В расчетах с ΔE_{pn} < 20 MeV второе слагаемое (пионный член) мало.

Таким образом, для изучения Quenching – эффекта измерения силовых функций необходимо проводить до значений энергий *E*_{max} не менее чем 50 МэВ.

Сечение Захвата Нейтрино в Реакции ¹²⁷I(*v*,*e*)¹²⁷Xe

Сечение Нейтринного Захвата Реакции ¹²⁷I(*v,e*)¹²⁷Xe

Расчетная S(E) без ГТР, без PR1

15

Отношение Расчетных Сечений Захвата Солнечных Нейтрино в Реакции ¹²⁷I(*v*,*e*)¹²⁷Xe

16

RATE OF SOLAR NEUTRINO CAPTURE (in SNU)

скорость захвата солнечных нейтрино (число поглощённых нейтрино 1/сек)

$$R = \int_0^{\infty} \rho_{solar}(E_{\nu}) \, \sigma_{total}(E_{\nu}) \, \mathrm{d}E_{\nu}$$

Расчеты $R(^{127}I)$ с экспериментальными S(E)

Q = 789	B-8	hep	N-13	0-15	F-17	Total
кэВ						
<i>R</i> (¹²⁷ I)	27.01	0.16	0.15	0.50	0.01	31.21
До S _n	22.39	0.09	0.15	0.50	0.01	26.52
(N ₁)	82.9%	56.3%				85%
Выше S _n	4.62	0.07	0.00	0.00	0.00	4.70
(N ₂)	17.1%	43.8%				15%

Расчеты *R* (¹²⁷I) с *S*(*E*) по ТКФС

Q = 789	B-8	hep	N-13	0-15	F-17	Total
кэВ						
<i>R</i> (¹²⁷ I)	27.70	0.166	0.037	0.174	0.004	28.90
Без GTR	8.83	0.042	0.035	0.148	0.003	9.81
						-66%
Без GTR	5.23	0.019	0.034	0.138	0.003	6.14
и PR1						-78.7%

Вывод: 1) Сильное влияние резонансной структуры силовой функции (GTR+PR1).

2) Отношение выходов изотопов ¹²⁶Хе / ¹²⁷Хе ≈ 15% диагностирует борные нейтрино.

Результаты расчетов сечения захвата ускорительных нейтрино ядром ¹²⁷₅₃*I*

	$\sigma(0n) \times 10^{-40} cm^2$	$\sigma(\geq 1n) \times 10^{-40} cm^2$
Teop. pacч. COHERENT (код MARLEY)	$2.3^{+0.2}_{-1.7}$	$\sigma(1n) = 18.9^{\pm 1.0}_{-5.3}$ $\sigma(2n) = 0.8^{\pm 0.1}_{-0.4}$
Эксп. результат COHERENT	$5.2^{\pm 3.4}_{-3.1}$	$\sigma(\geq 1n) = 2.2^{\pm 3.5}_{-2.2}$
Расчет (эксп. <i>S(E),</i> ферми функ. Суслова)	1.81	$\sigma(\geq 1n)$ = 18.22
Расчет (теор. <i>S(E),</i> ферми функ. Суслова)	1.94	$\sigma(1n)$ = 16.07 $\sigma(2n)$ = 2.88

Выводы

- В работе представлена зарядово-обменная силовая функция S(E) ядра ¹²⁷I
- Впервые выполнены расчеты теоретической силовой функции ядра ¹²⁷I, рассчитанной в ТКФС, с учетом пигми, гигантского Гамов-Теллеровского и более высоколежащих ГТ состояний
- Выполнены расчеты сечения захвата солнечных и ускорительных нейтрино ядром ¹²⁷I с использованием экспериментальной и теоретической силовой функции, рассчитанной в ТКФС
- Для солнечных нейтрино проанализирован вклад каждого резонанса на компоненты спектра нейтрино от Солнца
- Для σ(0n) результаты расчетов находятся в согласии с результатами коллаборации COHERENT, для σ(≥ 1n) расхождения все еще остаются
- Требуются дальнейшие исследования

СПАССИБО

THANK YOU

Ферми-функция

$$\sigma_{discr}(E_{\nu}) = \frac{1}{\pi} \sum_{k} G^2 p_e E_e F(Z, E_e) [B(F)_k + (\frac{g_A}{g_V})^2 B(GT)_k]$$

Ферми-функция – поправочный множитель, учитывающий кулоновское взаимодействие $F(Z, E_e) = \frac{|\psi_e(0)|_Z^2}{|\psi_e(0)|_{Z=0}^2}$

E. Fermi, "An attempt of a theory of beta radiation. 1.", Z. Phys.88, 161–177(1934). (point-like nuclei)

$$F_0(Z, A, W) = 4(2pR)^{2(\gamma-1)} \frac{|\Gamma(\gamma+iy)|^2}{(\Gamma(1+2\gamma))^2} e^{\pi y}, \gamma = \sqrt{1-(\alpha Z)^2}, y = \pm \alpha Z W/p$$

$$F(Z, A, W) = F_0 \cdot L_0.$$

$$L_0 = 1 + \frac{13}{60} (\alpha Z)^2 \mp \frac{\alpha ZWR(41 - 26\gamma)}{[15(2\gamma - 1)]} \mp \frac{\alpha ZR\gamma(17 - 2\gamma)}{[30W(2\gamma - 1)]} + \Omega$$

H. Behrens and J. Janecke, Numerical Tables for Beta-Decay and Electron Capture, Landolt-Boernstein - Group I Elementary Particles, Nuclei and Atoms (Springer, 1969).

Б.С. Джелепов и Л.Н. Зырянова, Влияние электрического поля атома на бета-распад, Изд. АН СССР (1956).

Ю.П. Суслов, Изв. АН СССР, сер. физ., 32, 213 (1968).

Влияние Ферми-функции на расчет скорости захвата нейтрино

1 – **E. Fermi**, "An attempt of a theory of beta radiation. 1.", *Z. Phys.*88, 161–177(1934).

2 – L. Hayen, N. Severijns, K. Bodek, D. Rozpedzik, and X. Mougeot, "High precision analytical description of the allowed β spectrum shape", *Rev. Mod.Phys.90, 015008* (2018) (Fermi 2017)

3 – **H. Behrens and J. Janecke**, *Numerical Tables for Beta-Decay and Electron Capture, Landolt-Boernstein - Group I Elementary Particles, Nuclei and Atoms (Springer, 1969).*

4 – **Б.С. Джелепов и Л.Н. Зырянова,** Влияние электрического поля атома на бета-распад, Изд. АН СССР (1956).

5 – Ю.П. Суслов, Изв. АН СССР, сер. физ., 32, 213 (1968).

Ферми-функция	⁸ B	hep	^{13}N	$^{15}\mathrm{O}$	$^{17}\mathrm{F}$	pep	⁷ Be	Total
1	27.286	0.120	0.161	0.543	0.013	0.818	2.850	31.795
2	25.735	0.108	0.163	0.549	0.013	0.826	2.890	30.287
3	25.706	0.108	0.164	0.551	0.013	0.828	2.923	30.29
4	22.853	0.093	0.152	0.510	0.012	0.767	2.695	27.085
5	21.881	0.089	0.145	0.490	0.012	0.738	2.562	25.920

Ферми-функция: расчеты

1 - E. Fermi, "An attempt of a theory of beta radiation. 1.", Z. Phys.88, 161–177(1934).

2 - L. Hayen, N. Severijns, K. Bodek, D. Rozpedzik, and X. Mougeot, "High precision analytical description of the allowed β spectrum shape", Rev. Mod.Phys.90, 015008 (2018) (Fermi 2017)

3 - **H. Behrens and J. Janecke**,*Numerical Tables for Beta-Decay and Electron Capture, Landolt-Boernstein - Group I Elementary Particles*,*Nuclei and Atoms* (Springer, 1969).

4 - B. S. Dzhelepov and L. N. Zyrianova, Influence of atomic electric fields on beta decay(Moscow: Akad. Nauk SSSR, 1956).

5 - Y. P. Suslov, *Izv. Akad. Nauk SSSR, Ser. Fiz.*32, 213 (1968).

Экспериментальные сечения захвата нейтрино

TABLE VII. Experimentally measured (flux-averaged) cross sections on various nuclei at low energies (1–300 MeV). Experimental data gathered from the LAMPF (Willis *et al.*, 1980), KARMEN (Bodmann *et al.*, 1991; Zeitnitz *et al.*, 1994; Armbruster *et al.*, 1998; Maschuw, 1998; Ruf, 2005), E225 (Krakauer *et al.*, 1992), LSND (Athanassopoulos *et al.*, 1997; Auerbach *et al.*, 2001; Auerbach *et al.*, 2002; Distel *et al.*, 2003), GALLEX (Hampel *et al.*, 1998), and SAGE (Abdurashitov *et al.*, 1999; Abdurashitov *et al.*, 2006) experiments. Stopped π/μ beams can access neutrino energies below 53 MeV, while decay-in-flight measurements can extend up to 300 MeV. The ⁵¹Cr sources have several monoenergetic lines around 430 and 750 keV, while the ³⁷Ar source has its main monoenergetic emission at $E_{\nu} = 811$ keV. Selected comparisons to theoretical predictions, using different approaches are also listed. The theoretical predictions are not meant to be exhaustive.

Isotope	Reaction Channel	Source	Experiment	Measurement (10^{-42} cm^2)	Theory (10^{-42} cm^2)
² H	$^{2}\mathrm{H}(\nu_{e},e^{-})pp$	Stopped π/μ	LAMPF	$52 \pm 18(tot)$	54 (IA) (Tatara, Kohyama, and Kubodera, 1990)
^{12}C	${}^{12}\mathrm{C}(\nu_{e},e^{-}){}^{12}\mathrm{N}_{g.s.}$	Stopped π/μ	KARMEN	$9.1 \pm 0.5(\text{stat}) \pm 0.8(\text{sys})$	9.4 [Multipole](Donnelly and Peccei, 1979)
	E C Sur	Stopped π/μ	E225	$10.5 \pm 1.0(\text{stat}) \pm 1.0(\text{sys})$	9.2 [EPT] (Fukugita, Kohyama, and Kubodera, 1988).
		Stopped π/μ	LSND	$8.9 \pm 0.3(\text{stat}) \pm 0.9(\text{sys})$	8.9 [CRPA] (Kolbe, Langanke, and Vogel, 1999)
	${}^{12}\mathrm{C}(\nu_{e}, e^{-}){}^{12}\mathrm{N}^{*}$	Stopped π/μ	KARMEN	$5.1 \pm 0.6(\text{stat}) \pm 0.5(\text{sys})$	5.4–5.6 [CRPA] (Kolbe, Langanke, and Vogel, 1999)
		Stopped π/μ	E225	3.6 ± 2.0 (tot)	4.1 [Shell] (Hayes and Towner, 2000)
		Stopped π/μ	LSND	$4.3 \pm 0.4(\text{stat}) \pm 0.6(\text{sys})$	
	${}^{12}C(\nu_{\mu},\nu_{\mu}){}^{12}C^{*}$	Stopped π/μ	KARMEN	$3.2 \pm 0.5(\text{stat}) \pm 0.4(\text{sys})$	2.8 [CRPA] (Kolbe, Langanke, and Vogel, 1999)
	${}^{12}C(\nu, \nu){}^{12}C^*$	Stopped π/μ	KARMEN	$10.5 \pm 1.0(\text{stat}) \pm 0.9(\text{sys})$	10.5 [CRPA] (Kolbe, Langanke, and Vogel, 1999)
	$^{12}\mathrm{C}(\nu_{\mu},\mu^{-})X$	Decay in flight	LSND	$1060 \pm 30(\text{stat}) \pm 180(\text{sys})$	1750–1780 [CRPA] (Kolbe, Langanke, and Vogel 1999)
					1380 [Shell] (Haves and Towner, 2000)
					1115 [Green's Function] (Meucci, Giusti,
					and Pacati, 2004)
	${}^{12}C(\nu_{\mu},\mu^{-}){}^{12}N_{gs}$	Decay in flight	LSND	$56 \pm 8(\text{stat}) \pm 10(\text{sys})$	68-73 [CRPA] (Kolbe, Langanke,
	μ., β.δ.				and Vogel, 1999)
					56 [Shell] (Hayes and Towner, 2000)
⁵⁶ Fe	${}^{56}\text{Fe}(\nu_{e}, e^{-}){}^{56}\text{Co}$	Stopped π/μ	KARMEN	$256 \pm 108(\text{stat}) \pm 43(\text{sys})$	264 [Shell] (Kolbe, Langanke,
					and Martínez-Pinedo, 1999)
⁷¹ Ga	71 Ga $(\nu_e, e^-)^{71}$ Ge	⁵¹ Cr source	GALLEX, ave.	0.0054 ± 0.0009 (tot)	0.0058 [Shell] (Haxton, 1998)
		⁵¹ Cr	SAGE	$0.0055 \pm 0.0007(tot)$	
		³⁷ Ar source	SAGE	$0.0055 \pm 0.0006(tot)$	0.0070 [Shell] (Bahcall, 1997)
^{127}I	127 I $(\nu_e, e^-)^{127}$ Xe	Stopped π/μ	LSND	$284 \pm 91(\text{stat}) \pm 25(\text{sys})$	210-310 [Quasiparticle]
					(Engel, Pittel, and Vogel, 1994)

PHYSICAL REVIEW LETTERS 131, 221801 (2023)

PHYSICAL REVIEW D 108, 072001 (2023)

Measurement of Electron-Neutrino Charged-Current Cross Sections on ^{127}I with the COHERENT Na $I\nu E$ Detector

P. An,^{1,2,*} C. Awe,^{1,2} P. S. Barbeau,^{1,2} B. Becker,³ V. Belov,^{4,5} I. Bernardi,³ C. Bock,⁶ A. Bolozdynya,⁴ R. Bouabid,^{1,2} A. Brown,^{7,2} J. Browning,⁸ B. Cabrera-Palmer,⁹ M. Cervantes,¹ E. Conley,¹ J. Daughhetee,¹⁰ J. Detwiler,¹¹ K. Ding,⁶

Measurement of $^{nat}Pb(\nu_e, Xn)$ production with a stopped-pion neutrino source

P. An,^{1,2} C. Awe,^{1,2} P. S. Barbeau,^{1,2} B. Becker,³ S. W. Belling,^{2,*} V. Belov,^{4,5} I. Bernardi,³ C. Bock,⁶ A. Bolozdynya,⁴
 R. Bouabid,^{1,2} A. Brown,^{7,2} J. Browning,⁸ B. Cabrera-Palmer,⁹ M. Cervantes,¹ E. Conley,¹ J. Daughhetee,¹⁰ J. Detwiler,¹¹
 K. Ding,⁶ M. R. Durand,¹¹ Y. Efremenko,^{3,10} S. R. Elliott,¹² L. Fabris,¹⁰ M. Febbraro,¹⁰ A. Gallo Rosso,¹³
 A. Galindo-Uribarri,^{10,3} M. P. Green,^{2,10,8} J. Hakenmüller,¹ M. R. Heath,¹⁰ S. Hedges,^{12,4} M. Hughes,¹⁴ B. A. Johnson,¹⁴

Ускоритель Spallation Neutron Source и эксперимент COHERENT

Сечение Нейтринного Захвата Реакции ¹²⁷I(*v*,*e*)¹²⁷Xe

Charge-Exchange Strength Function of Reaction $^{127}I(\rho, n)^{127}Xe$

Первые расчеты: Yu. S. Lutostansky, N. B. Shulgina. Phys. Rev. Lett. 67, 430 (1991) сделаны задолго до эксперимента – (1999).

Зарядово-обменная силовая функция реакции $^{127}I(p,n)^{127}Xe$

Результаты эксперимента

FIG. 4. The visible energy spectrum of CC events between 10 and 55 MeV is shown in black, along with the best-fit spectrum from MARLEY (orange) allowing the $\geq 1n$ and 0n amplitudes to float.

Conclusion.—COHERENT has measured the inclusive $\nu_e \text{CC}^{-127}\text{I}$ cross section on ¹²⁷I between 10 and 55 MeV to be $(9.2^{+2.1}_{-1.8}) \times 10^{-40} \text{ cm}^2$. This measurement is roughly 41% of the nominal cross section from MARLEY and to date is the heaviest CC neutrino-nucleus cross section measured in this energy regime.

FIG. 5. Measurement (1σ) of the $\nu_e CC^{-127}I$ cross section separated into 0n and $\geq 1n$ channels compared to the MARLEY prediction and Ref. [12], measuring the 0n cross section.

From the 2D fit, we derive measurements of the cross sections to the exclusive 0n and $\ge 1n$ channels simultaneously. Our measurement is shown in Fig. 5. At 1σ , the Nal ν E data imply $\sigma(0n) = (5.2^{+3.4}_{-3.1}) \times 10^{-40}$ cm² after profiling $\sigma(\ge 1n)$, consistent with Ref. [12] and MARLEY's prediction [18], though uncertainties are large due to the $\ge 1n$ events present in Nal ν E. The determined 1σ range for $\sigma(\ge 1n)$ is $2.2^{+3.5}_{-2.2} \times 10^{-40}$ cm² is roughly $10 \times$ lower than the MARLEY model, suggesting the suppression in the total rate relative to MARLEY is due to the modeling of the $\ge 1n$ channel. Profiles for the exclusive cross-section fits can be found in Supplemental Material [18], which includes Refs. [29–37].

8

