

# Density dependent hyperonic interactions in neutron stars

#### S.A. Mikheev, D.E. Lanskoy, A.I. Nasakin, S.V. Sidorov, T.Yu. Tretyakova

SINP MSU, Moscow

The reported study was supported by the Russian Science Foundation, project no. № 24-22-00077

03.07.2025

# Hypernuclei and hyperonic interactions





# **Skyrme interaction**

#### $\Lambda N$ -interaction

$$V_{\Lambda N}(\overrightarrow{r_{\Lambda}},\overrightarrow{r_{N}}) = u_{0}(1+\xi_{0}P_{\sigma})\delta(\overrightarrow{r_{\Lambda}}-\overrightarrow{r_{N}}) + \frac{1}{2}u_{1}(1+\xi_{1}P_{\sigma})[\overrightarrow{P}'^{2}\delta(\overrightarrow{r_{\Lambda}}-\overrightarrow{r_{N}})+\delta(\overrightarrow{r_{\Lambda}}-\overrightarrow{r_{N}})\overrightarrow{P}^{2}] + u_{2}(1+\xi_{2}P_{\sigma})\overrightarrow{P}'\delta(\overrightarrow{r_{\Lambda}}-\overrightarrow{r_{N}})\overrightarrow{P} + iW_{0}^{\Lambda}\overrightarrow{P}'\delta(\overrightarrow{r_{\Lambda}}-\overrightarrow{r_{N}})[\overrightarrow{\sigma}\times\overrightarrow{P}]$$

| Parametrization of<br>AN-interaction | γ   |
|--------------------------------------|-----|
| YBZ6                                 | 1   |
| YBZ2                                 | 1   |
| SLL4'                                | 1   |
| LYI                                  | 1/3 |
| YMR                                  | 1/8 |

**Three-body forces** 

**Density-dependent forces** 

$$V_{3} = V_{\Lambda NN}(\overrightarrow{r_{\Lambda}}, \overrightarrow{r_{N1}}, \overrightarrow{r_{N2}}) = u_{3}\delta(\overrightarrow{r_{\Lambda}} - \overrightarrow{r_{N1}})\delta(\overrightarrow{r_{\Lambda}} - \overrightarrow{r_{N2}})$$
$$V_{3} = V_{\Lambda N}(\overrightarrow{r_{\Lambda}}, \overrightarrow{r_{N}}, \rho) = \frac{3}{8}u_{3}(1 + \xi_{3}P_{\sigma})\delta(\overrightarrow{r_{\Lambda}} - \overrightarrow{r_{N}})\rho_{N}^{\gamma}(\frac{\overrightarrow{r_{\Lambda}} + \overrightarrow{r_{N}}}{2})$$

#### $\Lambda\Lambda\text{-interaction}$

$$V_{\Lambda\Lambda}(\overrightarrow{r_1}, \overrightarrow{r_2}) = \lambda_0 \delta(\overrightarrow{r_1} - \overrightarrow{r_2}) + \frac{1}{2} \lambda_1 [\overrightarrow{P}'^2 \delta(\overrightarrow{r_1} - \overrightarrow{r_2}) + \delta(\overrightarrow{r_1} - \overrightarrow{r_2}) \overrightarrow{P}^2]$$

 $\Lambda\Lambda$ -interaction with density dependence

$$V_{\Lambda\Lambda} = \sum_{1}^{3} (a_i + b_i k_F + c_i k_F^2) e^{-\frac{r^2}{\beta_i^2}}$$

## **Neutron stars**

• Chemical equilibrium

 $\mu_p + \mu_e = \mu_n$  $\mu_\mu = \mu_e$  $\mu_\Lambda + m_\Lambda = \mu_n + m_n$ 

• Tolman Oppenheimer Volkov equation  

$$\frac{dP}{dr} = \frac{G}{r^2} \frac{[\rho(r) + P(r)/c^2][m(r) + (4\pi r^3 P(r)/c^2)]}{1 - (2Gm(r)/rc^2)}$$

$$\frac{dm}{r^2} = 4\pi r^2 \rho(r)$$

#### • Hyperon puzzle

PSR J0740+6620, M =  $2.08 \pm 0.07 \text{ M}_{\odot}$ PSR J0952-0607, M =  $2.35 \pm 0.17 \text{ M}_{\odot}$ 



dr



## **Contributions of various terms in energy per baryon**



## Masses and radii of neutron star for different values of $\gamma$



The binding energy of  $\Lambda$ -hyperon in the pure nucleonic matter

## **Three-body and density-dependent forces**



**Three-body forces** 

**Density-dependent forces** 

$$V_{3} = V_{\Lambda NN}(\overrightarrow{r_{\Lambda}}, \overrightarrow{r_{N1}}, \overrightarrow{r_{N2}}) = u_{3}\delta(\overrightarrow{r_{\Lambda}} - \overrightarrow{r_{N1}})\delta(\overrightarrow{r_{\Lambda}} - \overrightarrow{r_{N2}})$$
$$V_{3} = V_{\Lambda N}(\overrightarrow{r_{\Lambda}}, \overrightarrow{r_{N}}, \rho) = \frac{3}{8}u_{3}(1 + \xi_{3}P_{\sigma})\delta(\overrightarrow{r_{\Lambda}} - \overrightarrow{r_{N}})\rho_{N}^{\gamma}(\frac{\overrightarrow{r_{\Lambda}} + \overrightarrow{r_{N}}}{2})$$

## $\Lambda\Lambda$ -interaction



D. E. Lanskoy, 1998, Minato F., 2011

| <b>ΛΛ-interaction</b> | <b>Radius of</b><br>interaction |
|-----------------------|---------------------------------|
| SΛΛ1'                 | Small                           |
| SΛΛ2                  | Medium                          |
| SΛΛ3'                 | Large                           |

NS – density dependent  $\Lambda\Lambda$ -interaction

NSC89 (Nijmegen) ---- NS (Gauss) ---- NS (Skyrme)

# Conclusion

- The equation of state of the neutron star matter is determined by a complex interplay of the contributions of the different terms of the potential of  $\Lambda N$ -interaction and various values of  $\gamma$  in the density dependence can be acceptable.
- The three-body  $\Lambda NN$  forces in neutron stars lead to a softer equation of state than densitydependent  $\Lambda N$  forces and can even considerably affect the chemical composition of the star leading to disappearance of protons at a certain density.
- Density dependence in  $\Lambda\Lambda$ -interaction does not have such a large effect on the characteristics of neutron stars as in  $\Lambda N$ -interaction interactions and this issue requires further study.



## THANK YOU FOR ATTENTION

# **Back up**

#### NS approximation

$$V_{\Lambda\Lambda} = \sum_{1}^{3} (a_i + b_i k_F + c_i k_F^2) e^{-\frac{r^2}{\beta_i^2}}$$

$$\begin{split} V_{\Lambda\Lambda}(\mathbf{r}_1,\mathbf{r}_2) &= \lambda_0 \delta(\mathbf{r}_1 - \mathbf{r}_2) \\ &+ \frac{1}{2} \lambda_1 [\mathbf{P}^{'2} \delta(\mathbf{r}_1 - \mathbf{r}_2) + \delta(\mathbf{r}_1 - \mathbf{r}_2) \mathbf{P}^2] \\ &+ \lambda_2 \mathbf{P}^{'} \delta(\mathbf{r}_1 - \mathbf{r}_2) \mathbf{P} \\ &+ \sum_i \lambda_3^i \delta(\mathbf{r}_1 - \mathbf{r}_2) \rho_N^{\delta_i} \\ &+ \frac{1}{2} \sum_i \lambda_4^i [\mathbf{P}^{'2} \delta(\mathbf{r}_1 - \mathbf{r}_2) + \delta(\mathbf{r}_1 - \mathbf{r}_2) \mathbf{P}^2] \rho_N^{\delta_i}. \end{split}$$

#### **NS** parameters

$$\begin{split} \lambda_0 &= \pi^{3/2} \sum_{1}^{3} a_i \beta_i^3, \\ \lambda_1 &= -\frac{1}{2} \pi^{3/2} \sum_{1}^{3} a_i \beta_i^5, \\ \lambda_3^1 &= \left(\frac{3\pi^2}{2}\right)^{1/3} \pi^{3/2} \sum_{1}^{3} b_i \beta_i^3, \\ \lambda_3^2 &= \left(\frac{3\pi^2}{2}\right)^{2/3} \pi^{3/2} \sum_{1}^{3} c_i \beta_i^3, \\ \lambda_4^1 &= -\frac{1}{2} \left(\frac{3\pi^2}{2}\right)^{1/3} \pi^{3/2} \sum_{1}^{3} b_i \beta_i^5, \\ \lambda_4^2 &= -\frac{1}{2} \left(\frac{3\pi^2}{2}\right)^{2/3} \pi^{3/2} \sum_{1}^{3} c_i \beta_i^5. \end{split}$$
Table 1. Parameters  $\lambda_0, \lambda_1, \lambda_3^i$  and  $\lambda_4^i$  (9) of NS parametrization in Skyrme form

|                                   |                                   | 0 1                                    | -                                   |                                     |                                     |
|-----------------------------------|-----------------------------------|----------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| $\lambda_0$ , MeV fm <sup>3</sup> | $\lambda_1$ , MeV fm <sup>5</sup> | $\lambda_3^1,  {\rm MeV}   {\rm fm}^4$ | $\lambda_3^2$ , MeV fm <sup>5</sup> | $\lambda_4^1$ , MeV fm <sup>6</sup> | $\lambda_4^2$ , MeV fm <sup>7</sup> |
| -833.1                            | 646.4                             | 1268.8                                 | -960.5                              | -735.4                              | 625.0                               |
|                                   |                                   |                                        |                                     |                                     |                                     |

**CSB** in three-body forces

$$\varepsilon_3 = \frac{1}{4} u_3 Y_\Lambda(\rho_N^2 + 2\rho_p \rho_n) = \frac{1}{8} u_3 Y_\Lambda(3\rho_N^2 - \rho_-^2).$$