

#### национальный исследовательский центр «КУРЧАТОВСКИЙ ИНСТИТУТ»

Институт физики высоких энергий имени А.А. Логунова Национального исследовательского центра «Курчатовский институт»

## Измерение выстроенности К\*-(892)-мезонов на ядрах на ускорительном комплексе У-70

Никита Калугин, НИЦ «Курчатовский институт» - ИФВЭ

## Введение

Информация о спиновых свойствах частиц, рождающихся в адрон-адронных взаимодействиях, может быть важна для понимания механизма рождениях этих же частиц. Экспериментальные данные по поляризации гиперонов в основном занимают эту нишу (37 экспериментальных статей, согласно статистике INSPIREHEP за 2023-2024 год). Данных про спиновые свойства векторных мезонов меньше (9 статей за тот же период). Спиновые свойства векторных мезонов описываются в терминах матрицы спиновой плотности (эрмитова матрица 3х3). Диагональные элементы этой матрицы  $\rho_{00,} \rho_{11,} \rho_{1-1}$  представляют собой относительные вероятности мезону иметь 0,+1,-1 проекции спина на ось квантования.

Исходя из примитивной модели рождения мезонов, никакое из направлений проекции спина не обособлено, подразумевается, что все проекции спина равновероятны, ( $\rho_{00}=\rho_{11}=\rho_{1-1}=1/3$ ), т.е. для вектора спина нет выделенного направления в пространстве (изотропность). В неизотропном случае говорят о наличии выстроенности вдоль оси квантования (spin alignment). Исследование подобных свойств векторных мезонов является не менее важным, чем поляризация гиперонов, и эта область нуждается в различных экспериментальных данных для множества теоретических моделей в области физики элементарных частиц.

## Эксперимент СПАСЧАРМ



Проведен анализ данных, набранных в сеансе 2021 и 2022 гг. на ядерных мишенях

Калугин Н.(ИФВЭ), ЯДРО-2025, Санкт-Петербург

(3)

## Отбор Событий

- 1. Множественность пучковых треков равна строго единице
- 2. Идентифицированный К пучковый трек черенковскими счетчиками  $\check{C}_1, \check{C}_2, \check{C}_3$
- 3. По крайней мере реконструирован один положительно заряженный трек и по крайней мере два отрицательно заряженных трека
- 4. Вторичная вершина, сформированная вилкой (V<sup>0</sup>), лежит в диапазоне  $Z_{decay} \approx 31$  cm от  $Z_{decay} \approx 77$  cm
- 5. Расстояние между треками в вилке не больше ~0.6 ст
- 6. Удаление кинематический областей с помощью критерия Арментероса ПодолянскогоЮ отвечающих за А<sup>0</sup>→ рπ и γ→ е<sup>+</sup>e<sup>-</sup>
- Z-координата первичной вершины находится в пределах ∓3σ (σ ≈2.5 см) от Z-координаты центра мишени (~23 см)
- 8. Косинус угла между направлением вектора 3-импульса V<sup>0</sup> и вектора, проведенного из первичной вершины во вторичную, должен быть больше 0.98.
- 9. 1С-ФИТ V<sup>0</sup> на массу  $K_{S}^{0}$  мезона.
- 10. xF > 0.4 для K<sup>0</sup><sub>s</sub> h<sup>-</sup>



KOs meson production in pi-A interactions at Accelerator complex U-70, N.K.Kalugin et. al., Phys.Atom.Nucl 87 (2024), 3, 200-207

### Сравнение статистики



Прирост статистики (K<sup>0</sup><sub>S</sub> h<sup>-</sup> -пар) в ~3.75 раз

# Измерение элемента р<sub>00</sub> спиновой матрицы плотности

Спиральная система (helicity frame)



#### Измерение элемента род спиновой



матрицы плотности

Калугин Н.(ИФВЭ), ЯДРО-2025, Санкт-Петербург

#### Измерение элемента роо спиновой

#### матрицы плотности

Invariant mass distributions have been fitted by the well-known formula:

 $\frac{dN}{dM} = BW \cdot PS + BG \approx BG(1 + \alpha 1BW)$ Assuming PS $\approx$ BG

$$BW(M) = \frac{M}{p^*} \cdot \frac{\Gamma(M)}{(M^2 - M_0^2)^2 + M_0^2 \Gamma^2(M)}$$

BW(M) - relativistic p-wave Breit-Wigner function with dynamical width:

$$\Gamma(M) = \Gamma_0 \cdot \left(\frac{p^*(M)}{p^*(M_0)}\right)^{2l+1} \frac{\rho(M)}{\rho(M_0)}$$

$$\rho(M) \approx \frac{1}{M}$$

 $p^*(M)$ - the momentum of the decay product in the rest frame of the resonance

*l* =1 orbital momentum.

Any details see in J.D.Jackson, Nuovo Cimento 34 (1964) 76

 $BG(M) = \alpha 2 \cdot (M - M_{tres})^{\alpha 3} \cdot e^{-\alpha 4(M - M_{tres}) - \alpha 5 \cdot (M - M_{tres})^2}$ Background is described by a two terms, involving at most 4 free parameters, which take into account possible threshold effects and quasi-exponential background far from threshold mass  $M_{tres}$ .

|                                   | "Сырые" выходы (raw yields) К*- (892) |
|-----------------------------------|---------------------------------------|
| 0.0 <  cos⊖* <sub>H</sub>   <=1/6 | 815∓39                                |
| 1/6 <  cos⊖* <sub>H</sub>   <=2/6 | 670∓26                                |
| 2/6 <  cos⊖* <sub>H</sub>   <=3/6 | <b>694</b> ∓27                        |
| 3/6 <  cos⊖* <sub>H</sub>   <=4/6 | <b>572</b> ∓24                        |
| 4/6 <  cos⊖* <sub>H</sub>   <=5/6 | 394∓20                                |
| 5/6 <  cos⊖* <sub>H</sub>   <=1.0 | 236∓16                                |

Also taken into account experimental resolution in the invariant mass:  $\Gamma(M) = \Gamma_0 \cdot \left(\frac{p^*(M)}{p^*(M_0)}\right)^{2l+1} \frac{\rho(M)}{\rho(M_0)} + 2\sqrt{2} \cdot \sigma(\mathbf{K_s^0 \pi^-})$ 

#### Измерение элемента роо спиновой



## Измерение элемента р<sub>00</sub> спиновой матрицы плотности



#### Измерение элемента роо спиновой

матрицы плотности

 $\frac{dN}{d\cos\theta^*} \sim [1 - \rho_{00} + (3\rho_{00} - 1)(\cos\theta^*)^2]$ 



Заключение Калугин Н.(ИФВЭ), ЯДРО-2025, Санкт-Петербург

Измерен элемент р<sub>00</sub> спиновой матрицы плотности векторного К<sup>\*-</sup>(892)-мезона, образованного инклюзивно в К<sup>-</sup> – ядерных взаимодействиях при импульсе пучка ~26.5 ГэВ/с в кинематической области хF > 0.4 в системе спиральности на установке СПАСЧАРМ на ускорительном комплексе У-70 НИЦ ИФВЭ Курчатовский институт. Величина р<sub>00</sub> составляет 0.39 +/- 0.02, что является указанием на выстроенность спина K<sup>\*-</sup>(892)-мезона.

В раннее проведенных экспериментах величина  $\rho_{00}$  K<sup>\*-</sup>(892)-мезона составляет:

- 1. в nC взаимодействиях: 0.393 +/- 0.025 в поперечной системе (ЭКСЧАРМ)
- 2. в v<sub>u</sub>d взаимодействиях: 0.28 +/- 0.07 в поперечной системе (NOMAD)
- 3. в К<sup>-</sup>р взаимодействиях: варьируется от 0.01 +/-0.05 до 0.58 +/- 0.13 для 0.0 GeV<sup>2</sup> <|t| <= 1.2 GeV<sup>2</sup> в системе Готфрида-Джексона, варьируется от 0.06 +/-0.06 до 0.66 +/- 0.12 для 0.0 GeV<sup>2</sup> <|t| <= 1.2 GeV<sup>2</sup> в системе спиральности (2м водородная пузырьковая камера, импульс пучка 14.3 ГэB/с, CERN)
- 4. в К<sup>-</sup>р взаимодействиях: варьируется от 0.12 +/-0.06 до 057 +/- 0.18 для 0.0 GeV<sup>2</sup> <|t| <= 1.2 GeV<sup>2</sup> в системе Готфрида-Джексона, варьируется от 0.06 +/-0.18 до 0.50 +/- 0.19 для 0.0 GeV<sup>2</sup> <|t| <= 1.2 GeV<sup>2</sup> в системе спиральности (пузырьковая камера Мирабель, импульс пучка 70 ГэВ/с, ИФВЭ)
- 5. Антипротон-протонных взаимодействиях: 0.28 +/- 0.06 в спиральной системе, 0.25 +/-0.06 в системе Готфрида-Джексона, 0.23 +/- 0.07 в системе Эдэйра, 048 +/- 0.07 в поперечной системе (пузырьковая камера Мирабель, импульс пучка 32 ГэВ/с, ИФВЭ (11)

#### Заключение

Следующим этапом анализа будет исследование систематических ошибок, а так же подготовка результатов измерения р<sub>00</sub> в системах Готфрида-Джексона (GJ) и поперечной системе (transversity), измерение р<sub>00</sub> К<sup>\*-</sup>(892)-мезона (инклюзивно образованного) во взаимодействиях К<sup>-</sup> С, К<sup>-</sup>Си, К<sup>-</sup>Рb (данные сеанса 2024г на установке СПАСЧАРМ)