Production of spectator neutrons, protons and light fragments on fixed targets at NICA

Aleksandr Svetlichnyi*, Ekaterina Vasyagina, Savva Savenkov, Igor Pshenichnov

Institute for Nuclear Research Russian Academy of Sciences Moscow Institute of Physics and Technology *aleksandr.svetlichnyy@phystech.edu

Motivation

- Two experiments at NICA are focused on nucleusnucleus collision physics: BM@N and MPD. Both experiments can detect forward going particles and fragments.
- Collisions of ¹²⁴Xe beam with fixed targets are considered as a part of the research program at NICA. The collisions of Xe-CsI has been studied at BM@N and Xe-W are considered at MPD.
- So, reliable models are required to simulate the response of the forward detectors of the both experiments.
 - This requires realistic description of the spectator fragments
 - In this work, the UrQMD*) model has been taken as a baseline

Outline

- UrQMD-AMC: UrQMD to simulate collisions and AAMCC to build and decay spectator fragments
- Comparison of UrQMD-AMC with data on projectile fragmentation
 - 10.6A GeV Au projectile on heavy nuclei of nuclear emulsion
 - 600A MeV ¹²⁴Sn on ¹²⁴Sn
- Production of the forward neutrons and protons at Xe-CsI at BM@N and Xe-W at MPD-FXT
- Production of the light spectator nuclei at Xe-CsI at BM@N and Xe-W at MPD-FXT

Abrasion-Ablation Monte Carlo for Colliders

- Abbreviated as AAMCC or A²MC²
- Nucleus-nucleus collisions are simulated by means of the Glauber Monte Carlo model 1). Non-participated nucleons form spectator matter (prefragment)
- Excitation energy of prefragment can be calculated via three options:
 - Ericson formula based on the particle-hole model²⁾
 - parabolic ALADIN approximation³⁾ adjusted to describe the data for light and heavy nuclei
 - Hybrid approximation: a combination of Ericson formula for peripheral collisions and ALADIN approximation otherwise
- Deexcitation is simulated via MST-clusterisation⁴⁾ accomplished with decay models from Geant45)
- An option with the pre-simulated collisions is available via reading of MCini file.
 - 1) C. Loizides, J.Kamin, D.d'Enterria Phys. Rev. C **97** (2018) 054910
 - 2) T. Ericson Adv. In Phys. **9** (1960) 737
 - 3) A. Botvina et al. NPA 584
 - 4) R. Nepeivoda, et al., Particles 5 (2022) 40
 - 5) J. Alison et al. Nucl. Inst. A 835 (2016) 186

Abrasion-Ablation Monte Carlo for Colliders

- Decays of prefragments are simulated as follows:
 - pre-equilibrium decays modelled with MST-clustering algorithm¹⁾
 - Fermi break-up model from Geant4 v9.2 2)
 - Statistical Multifragmentation Model (SMM) from Geant4 v10.4 ²⁾
 - Weisskopf-Ewing evaporation model from Geant4 v10.4²⁾
- They were validated and adjusted to describe the data³⁾.
- Deexcitation models can be used independently to simulate secondary decays of prefragments obtained with another model, in particular with UrQMD.
- In this use AAMCC is termed as Ablation Monte Carlo (AMC).
 - 1) R. Nepeivoda, et al., Particles **5** (2022) 40
 - 2) J. Alison et al. Nucl. Inst. A **835** (2016) 186
 - 3) 55th Geant 4 Techical Forum

github.com/Spectator-matter-group-INR-RAS/AAMCC

https://indico.cern.ch/event/1106118/contributions/4693132/

MST-clustering

Clusters representation on the Side A

- Graph vertexes nucleons, edges weights Cartesian distances between them.
- (a) The minimum spanning tree is selected from the complete graph
- (b) All edges with a weight greater than cut-off parameters d_0 are removed.
- (c) Connectivity components are separate (pre-)fragments
- (d) Separate (pre-)fragments undergo Coulomb repulsion
- R. Nepeivoda, et al., Particles 5 (2022) 40
- E. Vasyagina, et al., PEPAN Lett., in print

UrQMD: dynamical collision model

XeXe, b = 5 fm, $\tau = 0.40000001$ fm/c

UrQMD provides two options for the calculation: with accounting for the Skyrme forces (Skyrme) and w/o it (Cascade).

The accounting for the Skyrme forces significantly change the dynamical splitting of the prefragment. Will it change the yields of spectator fragments?

Combining UrQMD and AAMCC

- AMC is developed to simulate secondary decays of spectator fragments from UrQMD.
- MCini output file format adopted in MPD and BM@N is employed.
- It is assumed that spectator matter is formed by the nucleons that do not undergo any collisions.
- As UrQMD simulates the expansion of prefragments we employ MST-clustering with fixed d_0 .

Number of participants in UrQMD as a function of the evolution time

- The average number of collisions continues to rise after the passing time t_{pass} = 7.1 fm/c (marked as black vertical line) for both centralities
- For b = 2 fm, this rise is not so significant, and N_{part} reaches saturation at t = 10 fm/c. N_{part} is slightly larger than in GlauberMC just after t_{pass}
- For b = 10 fm, the significant rise of $\langle N_{part} \rangle$ after t_{pass} is observed. A growing contribution of the elastic collisions is also seen. At t_{pass} inelastic part of $\langle N_{part} \rangle$ is identical to GlauberMC
- When N_{part} saturates for b = 10 fm?

N_{part} saturates at 80 fm/c

Kinetic freeze-out occurs much later, at ~80 fm/c

The collision dynamics should be propagated at least until kinetic freeze-out.

Combining UrQMD and AAMCC

UrQMD:

- Version 3.4
- Cascade or Skyrme mode
- Hard sphere nuclear density parametrization
- Evolution time 100 fm/c
- Other parameters are set to default values

AMC:

- Find spectator nucleons
- Define prefragments via MST-clustering
- Constant d_0 = 1.8 fm
- Model prefragments decays
- All the participant data remain intact

Presently, the pipeline is organized via dedicated bash scripts. A new pipeline implementation is under development.

¹⁹⁷Au fragmentation in nuclear emulsion

Accounting for the Skyrme forces leads to a better description of the data

10.6A GeV, Au+Ag, UrQMD-AMC, $d_{\alpha} = 1.8 \text{ fm}$

Fragmentation events on

¹⁹⁷Au fragmentation: p_T for fragments

¹⁹⁷Au fragmentation: He production

- The UrQMD provides a good description of the data for Z_{bound} < 15 and Z_{bound} > 40, while the data are underestimated otherwise.
- Accounting for the Skyrme forces does not significantly change the $M_{Z=2}$

¹⁹⁷Au fragmentation: p_T for He

A reasonable agreement for the both Cascade and Skyrme is obtained.

¹²⁴Sn fragmentation: neutron multiplicity

UrQMD-AMC with the Skyrme forces better describes the average neutron multiplicity vs Z_{bound}

¹²⁴Sn fragmentation: neutron rapidity distribution

 y_0 is the beam rapidity

UrQMD-AMC with the Skyrme forces better describes

the rapidity distributions of neutrons.

P. Pawlowski et al, Phys. Rev. C, 108, 044610 (2023)

Forward neutrons from Xe-CsI and Xe-W collisions at NICA

Accounting for the spectator fragments leads to the decrease of the number of the produced neutrons

A large difference between Skyrme and Cascade was obtained

Forward protons at Xe-CsI and Xe-W collisions at NICA

As for neutrons, accounting for the spectator fragments leads to the decrease of the number of the produced neutrons

A large difference between Skyrme and Cascade was obtained

Forward deutrons and alphas from Xe-CsI collisions at BM@N

Most of the deutrons and alphas are emitted within the acceptance of the experiment

Forward deutrons and alphas from Xe-W collisions at MPD

Most of the deutrons and alphas are emitted within the acceptance of the experiment

Conclusions

- A hybrid model UrQMD-AMC was developed
- A better description of the data is obtained with UrQMD with accounting of the nucleon-nucleon Skyrme forces
 - The production of nucleons is sensitive to the presence of the Skyrme forces
 - In contrast, the production of fragments in semi-central and central collisions are not is very sensitive
- Accounting for the fragments leads to the reduction of the number of free nucleons
- It is predicted that deutrons and alphas will be emitted mostly within acceptance of the forward detectors at NICA-FXT

Thank you for your attention!

Deepened Impulse, V. Kandinsky 1928