
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ

«ПЕТЕРБУРГСКИЙ ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ ИМ. Б.П. КОНСТАНТИНОВА

НАЦИОНАЛЬНОГО ИССЛЕДОВАТЕЛЬСКОГО ЦЕНТРА «КУРЧАТОВСКИЙ ИНСТИТУТ»

Возможность изучения свойств заряженных адронов в Xe+W столкновениях при энергии 2.5A ГэВ на установке MPD в ускорителе NICA

Я.А. Бердников, <u>Д.А. Иванищев</u>, Д.О. Котов, М.В. Малаев (СПбПУ и НИЦ «Курчатовский Институт» - ПИЯФ) для коллаборации МРО

Работа выполнена в рамках Государственного задания на проведение фундаментальных исследований (код темы FSEG-2025-0009)

Эксперимент MPD на ускорителе NICA

•Один из двух экспериментов на ускорителе NICA по изучению столкновений тяжелых ядер при энергии $\sqrt{s_{NN}} = 4 - 11 \ \Gamma$ эВ Этап - І **TPC**: $|\Delta \varphi| < 2\pi$, $|\eta| \le 1.6$ **TOF, EMC**: $|\Delta \varphi| < 2\pi$, $|\eta| \le 1.4$ **FFD**: $|\Delta \varphi| < 2\pi$, 2,9 < $|\eta| < 3$,3 **FHCAL**: $|\Delta \varphi| < 2\pi$, 2 < $|\eta| < 5$ Interaction rate [Hz] Heavy ion collisions Большая барионная Temperature T [MeV] плотность

Quarks and Gluons

rkyonic phase

olor Super-

 $n_0 = 0.16 \text{ fm}^{-3}$

Critical point?

Hadrons

Compact Stars

•NICA будет изучать КХД-материю при больших значениях барионной плотности → фазовый переход 1 рода + КХД критическая точка

→ внутренняя структура

компактных звезд

 10^{3}

 10^{2}

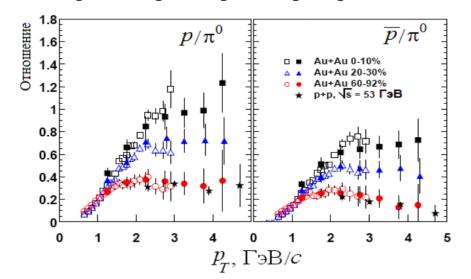
10

3 4 5 6 7 10

20 30

200

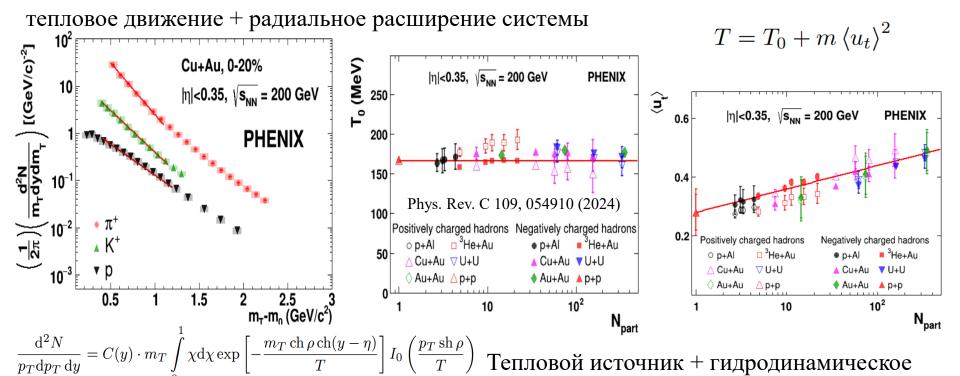
100


Collision energy √s_{NN} [GeV]

•Другие действующие (NA61/Shine, STAR-BES, BM@N, HADES) и будущие эксперименты (CBM, CEE, NA60 и др.) в ~ одинаковой области энергий

Легкие адроны в столкновениях тяжелых ядер

- •Свойства среды, образующейся в АА столкновениях, определяют косвенно
- •Регистрация рождающихся частиц детекторными системами
- •Заряженные легкие адроны (π^{\pm} , K^{\pm} и p^{\pm}):
- ✓ рождаются в изобилии в столкновениях тяжелых релятивистских ядер
- ✓ достаточно легко идентифицируются $(dE/dx, m^2, \beta)$
- ✓ разные кварковый состав, барионное число, масса, странность
- •Систематическое экспериментальное исследование инвариантных спектров по p_T и m_T , выходов и факторов ядерной модификации:
 - ✓ свойства горячей и плотной ядерной среды в момент ее распада на конечные адроны
- ✓ проверка достижения системой теплового и химического равновесия
- ✓оценка динамики реакции, включая коллективные эффекты при продольном и поперечном расширении файербола

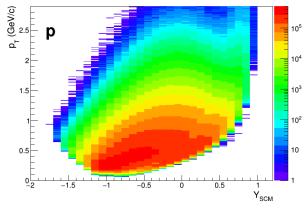

Эффект избыточного выхода барионов по отношению к мезонам на RHIC и LHC – один из признаков образования КГП

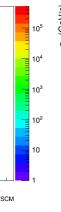
Спектры рождения легких адронов

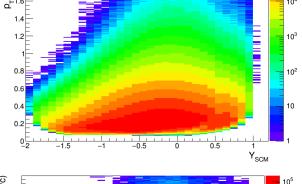
- •Отслеживание динамики реакции по форме спектров и $< p_T >$
- •Форма инвариантных спектров по p_T и $m_T(\sqrt{(p_T^2+m_0^2)})$ чувствительна к:
- ✓ механизмам рождения частиц в различных кинематических областях
- √ взаимовлиянию радиального потока
- ✓ рекомбинации партонов при промежуточных поперечных импульсах
- ✓ температуре кинетической заморозки (T_0)

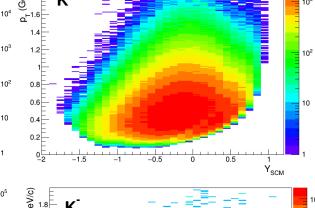
Phys.Rev.C48:2462-2475,1993

✓ температуре кинетической заморозки (T_0)
✓ средней скорости коллективного потока частиц ($< u_t >$) $\frac{1}{2\pi m_T} \frac{d^2 N}{dm_T du} = \frac{A}{2\pi T (T + m_0)} \exp\left(-\frac{m_T - m_0}{T}\right)$

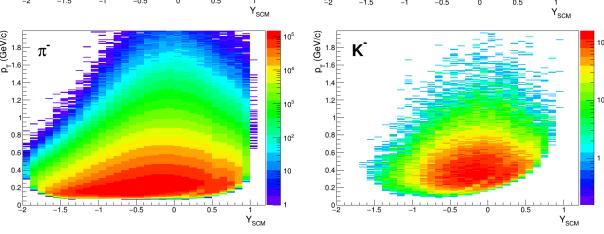


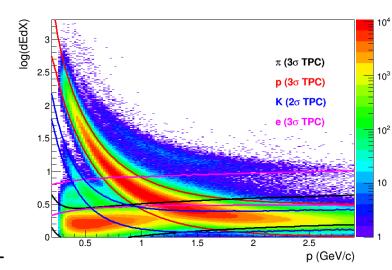

расширение ("взрывная волна")

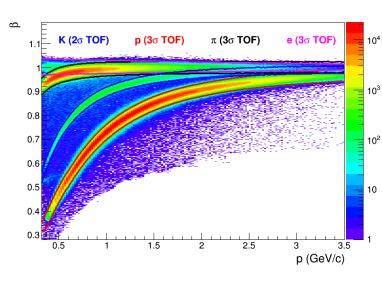

Возможности MPD измерять π^{\pm} , K^{\pm} и p в столкновениях Xe+W@2,5A ГэВ ($\sqrt{s_{NN}}$ = 2,87 ГэВ)


Модельные расчеты

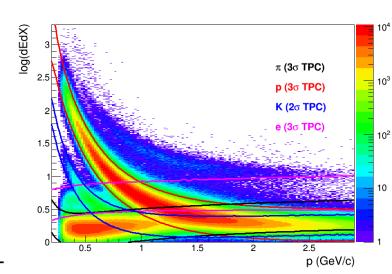
- •Полная событий последовательность расчетов восстановления модельных И использованием UrQMD v.3.4 (Xe+W@2,5A ГэВ ($\sqrt{s_{NN}}$ = 2,87 ГэВ), 15 млн. событий)
- Прохождение частиц через MPD посредством MPDroot (Geant v.4):
 - ✓ реалистичное моделирование отклика подсистем
 - ✓ восстановление треков

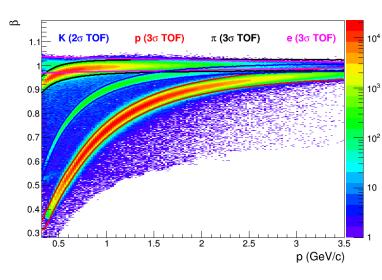


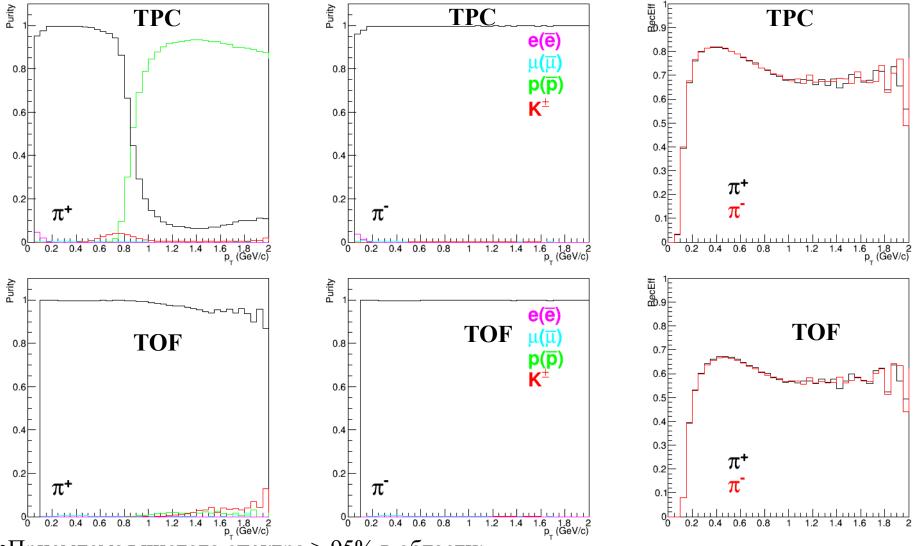



- •Центральная область быстрот
- $-0.5 < y_{\text{CLIM}} < 0$
- •Ограничение по p_T :
- ✓пионы: $p_T > 0.05 \ \Gamma$ эВ/c
- ✓ каоны: $p_{\rm T}$ > 0,15 ГэВ/c
- ✓протоны: $p_T > 0.25 \ \Gamma$ эВ/c

Идентификация пионов и протонов

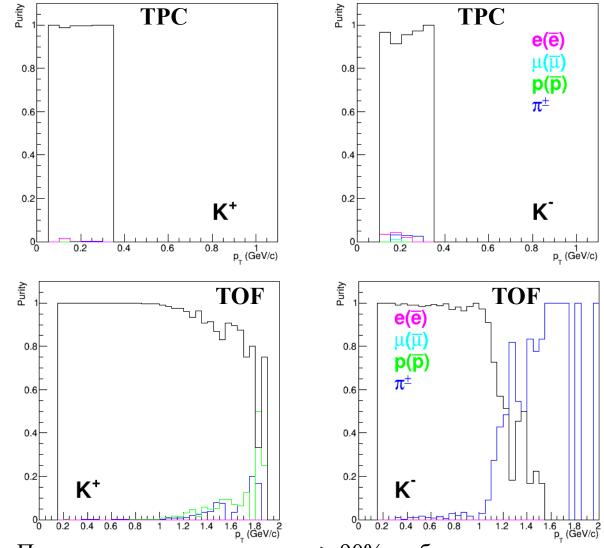

- Отбор столкновений:
- ✓ центральность 0–90% (7 интерв.)
- Отбор треков:
- ✓число точек TPC > 28
- ✓DCA-to-PV $\leq 2\sigma_{x,y,z}$
- ✓-0,5 < y_{CLIM} < 0
- Два подхода идентификации пионов и протонов:
- (**TPC-TOF**)
- ✓ ТРС-отбор (2 σ) для заданного типа частицы (π , p)
- ✓ дополнительное условие для треков с ТОFсовпадением: если трек имеет ТОF-совпадение в пределах 3σ то применяется ТОF-отбор (2σ)
- (TOF-TPC)
- ✓ TOF-отбор (2 σ) для заданного типа частицы (π , p)
- ✓ TPC-отбор (2 σ) для заданного типа частицы (π , p)
- Спектры восстанавливаются с чистотой > 95%
- Спектры корректируются с учетом примесей \rightarrow для величины коррекции вводится 50% неопределенность $(0.5\times5\%=2.5\%~p_{T}$ -коррелированная систематическая погрешность для спектров)
- Окончательный спектр объединенные **TPC-TOF** и **TOF-TPC** спектры, с наименьшими стат. ошибками

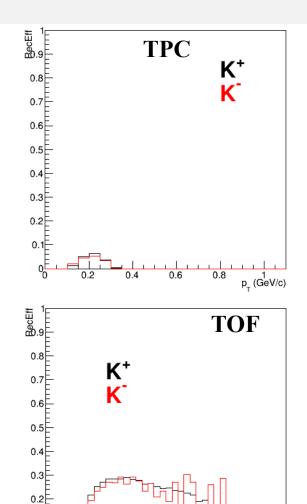



Идентификация каонов

- Отбор столкновений:
- ✓ центральность 0–90% (7 интерв.)
- Отбор треков:
- ✓число точек TPC > 28
- ✓DCA-to-PV $\leq 2\sigma_{x,y,z}$
- \checkmark -0,5 < y_{CLIM} < 0
- Два подхода идентификации каонов:
- (**TPC-TOF**)
- ✓ ТРС-отбор (1 σ) для заданного типа частицы (K)
- ✓ дополнительное условие для треков с ТОFсовпадением: если трек имеет ТОF-совпадение в пределах 3 от применяется ТОF-отбор (1 от)
- ✓ TPC 3 σ veto-критерий не быть другой частицей $(e/\pi/p)$
- (TOF-TPC)
- ✓ ТОF-отбор (1 σ) для заданного типа частицы (K)
- ✓ ТРС-отбор (1 σ) для заданного типа частицы (K)
- ✓ TOF 3 σ veto-критерий не быть другой частицей $(e/\pi/p)$
- Спектры восстанавливаются с чистотой > 90%
- Спектры корректируются с учетом примесей \rightarrow для величины коррекции вводится 50% неопределенность (0,5×10% = 5% p_T -коррелированная систематическая погрешность для спектров)
- Окончательный спектр объединенные **TPC-TOF** и **TOF-TPC** спектры, с наименьшими стат. ошибками

Пионы

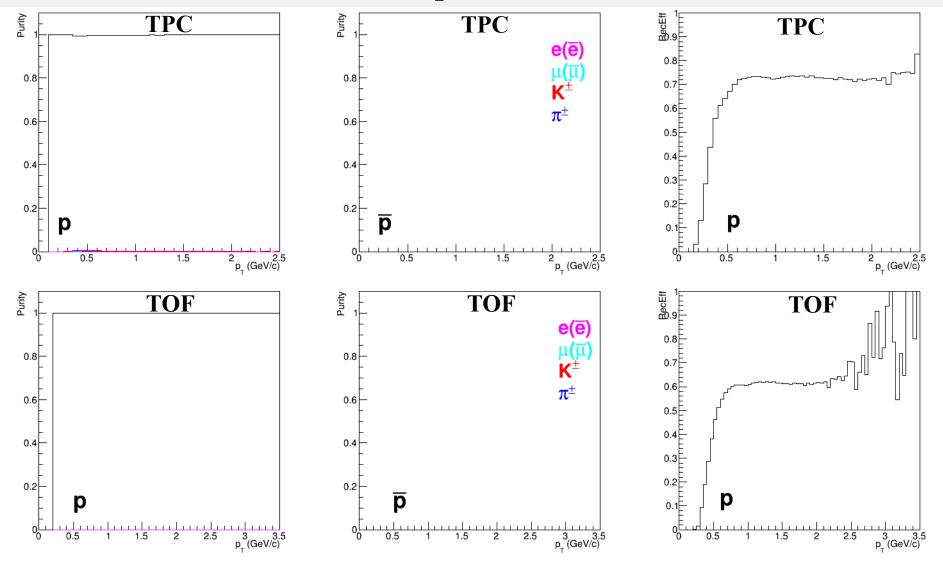

•Приемлемая чистота спектра > 95% в области:


 \checkmark π⁻: 0,1 < p_T < 2 ΓэВ/c

 $\checkmark \pi^+$: $p_T < 0.6$ (TPC-TOF) и 1,4 (TOF-TPC) ГэВ/c

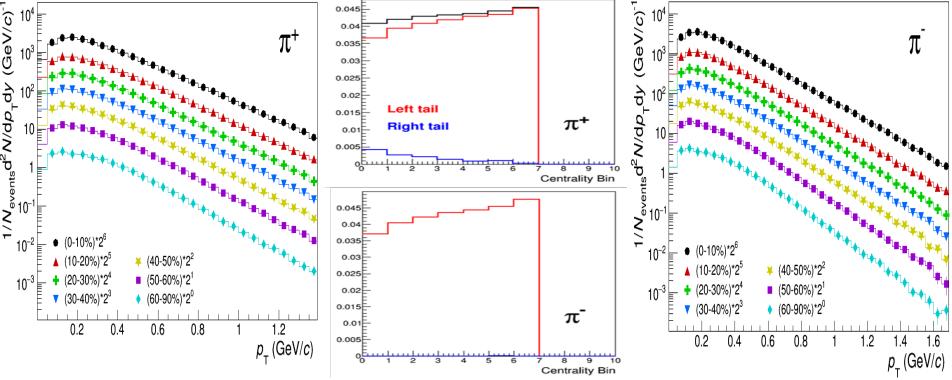
•Приемлемые значения эффективностей в широком диапазоне p_T

Каоны



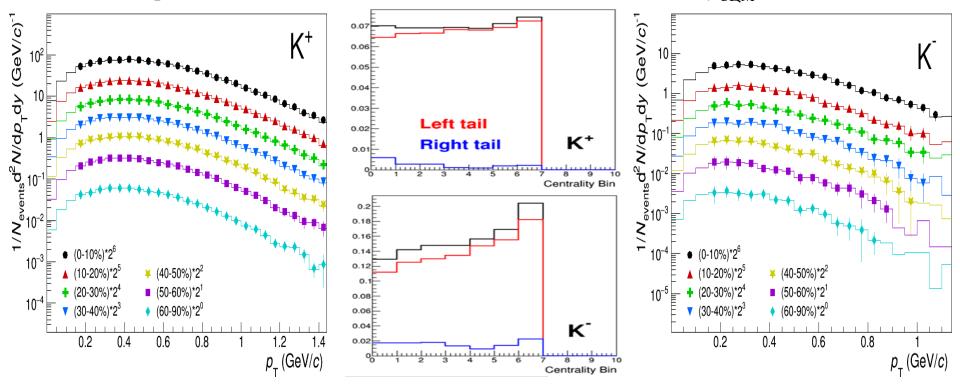
0.1

- •Приемлемая чистота спектра > 90% в области:
- ✓ K-: p_T < 1 ГэВ/c
- $✓ K^+$: p_T < 1,4 ГэВ/c
- •Эффективность TOF-TPC > TPC ~30% (макс.)


Протоны

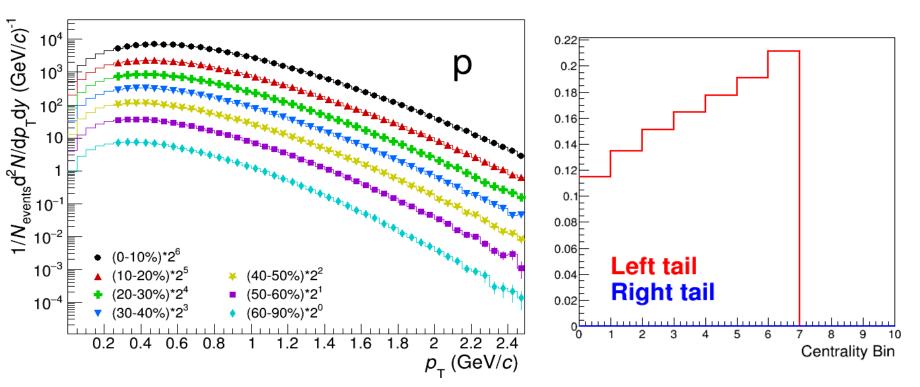
- •Генератор UrQMD не рождает антипротоны в Xe+W@2,5A ГэВ
- •Приемлемая чистота спектра $\sim 100\%$
- •Приемлемые значения эффективностей в широком диапазоне p_T

Спектры рождения и тест на замкнутость, пионы


•Полная последовательность модельных расчетов и восстановления параметров, диапазоны ограничены возможностью извлечения сигналов, $-0.5 < y_{CIIM} < 0$

- •Реконструированные спектры совпадают со сгенерированными в пределах погрешностей
- •Первые измерения рождения пионов в зависимостью от центральности станут возможными при накоплении $\sim 10^7~{\rm Xe+W}$ @2,5A ГэВ столкновений
- •Измерения возможно выполнить начиная с импульсов близких к нулю (50 МэВ/c)
- •Восстанавливается большая часть спектров $\sim 96\%$ от общего выхода, теряется $\sim 4\%$ в области малых p_T

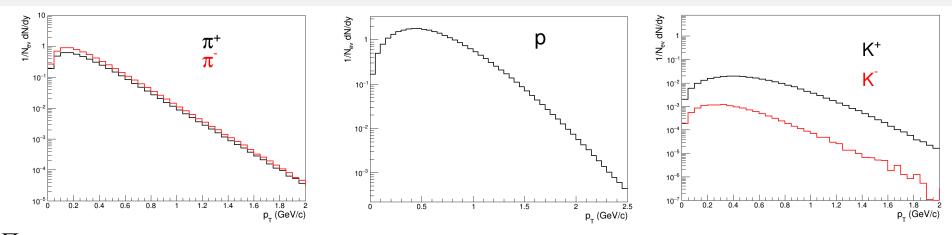
Спектры рождения и тест на замкнутость, каоны


•Полная последовательность модельных расчетов и восстановления параметров, диапазоны ограничены возможностью извлечения сигналов, $-0.5 < y_{CIIM} < 0$

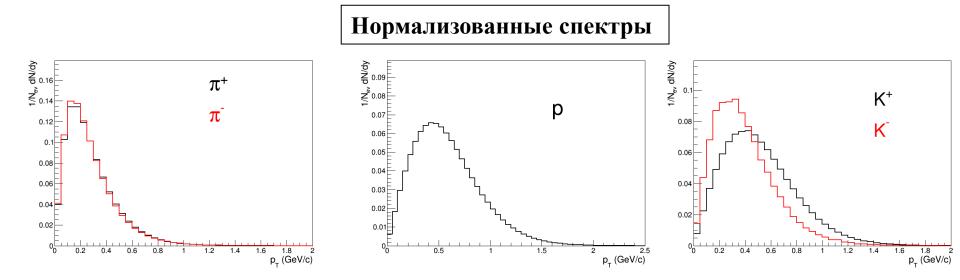
- •Реконструированные спектры совпадают со сгенерированными в пределах погрешностей
- •Первые измерения рождения каонов в зависимостью от центральности станут возможными при накоплении $\sim 10^7~{
 m Xe+W} @ 2.5 {
 m A}~{
 m \Gammap} {
 m B}$ столкновений
- •Измерения возможно выполнить начиная с импульсов близких к нулю $(150 \text{ M} \cdot \text{B/}c)$
- •Восстанавливается большая часть спектров $\sim 93(K^+)$ 80–88(K^-)% от общего выхода, основная часть теряется в области малых p_T

Спектры рождения и тест на замкнутость, протоны

•Полная последовательность модельных расчетов и восстановления параметров, диапазоны ограничены возможностью извлечения сигналов, $-0.5 < y_{CIIM} < 0$


- •Реконструированные спектры совпадают со сгенерированными в пределах погрешностей
- •Первые измерения рождения протонов в зависимостью от центральности станут возможными при накоплении $\sim 10^7~{
 m Xe+W} @ 2,5{
 m A}~{
 m \Gamma}{
 m B}$ столкновений
- •Измерения возможно выполнить начиная с импульсов близких к нулю (250 МэВ/c)
- •Восстанавливается большая часть спектров ~79–88% от общего выхода, теряется ~21–12% в области малых p_T

Заключение


- Исследование рождения идентифицированных легких заряженных адронов является важной частью физической программы MPD:
 - ✓ свойства горячей и плотной ядерной среды в момент ее распада на конечные адроны;
 - ✓ достижение системой теплового и химического равновесия;
 - ✓ динамика реакции
- •Разработан и применен подход к восстановлению инвариантных спектров по поперечному импульсу π^{\pm} , K^{\pm} и p на основе σ -параметризации информации об идентификации частиц в детекторах TPC и TOF:
- ✓простой;
- ✓ минимальное число модельно-зависимых поправок
- •Первые результаты измерения рождения π^{\pm} -, K^{\pm} -мезонов и p в зависимости от поперечного импульса и центральности возможно будет получить при набранной статистике $\sim 10^7$ Xe+W@2,5A ГэВ ($\sqrt{s_{NN}}$ = 2,87 ГэВ) столкновений
- •Измерения возможны начиная с малых импульсов в области центральных быстрот:
- ✓ пионы: $p_T > 0.05 \, \Gamma$ эВ/c, 96 % от общего выхода;
- ✓ каоны p_T > 0,15 ГэВ/c, 93 (80–87) % от общего выхода;
- ✓ протоны, $p_T > 0.25$ ГэВ/c, 79–88 % от общего выхода
- \rightarrow высокая чувствительность к различным физическим явлениям, наиболее выраженным при малом p_T
- Работа выполнена в рамках Государственного задания на проведение фундаментальных исследований (код темы FSEG-2025-0009)

Запасные

Сгенерированные спектры

Почти совпадают для пионов; нет антипротонов; существенная асимметрия для каонов

Спектры мягкие \rightarrow область малых p_T очень важна

Потери спектра

Доля потерянного спектра, если спектр начинается с p_{T} левого столбца

St pT	Proton	Pi+	Pi-	K+	K-
0.05	0.005	0.037	0.037	0.007	0.014
0.10	0.019	0.131	0.134	0.029	0.053
0.15	0.042	0.259	0.266	0.064	0.114
0.20	0.074	0.394	0.404	0.112	0.193
0.25	0.114	0.514	0.526	0.170	0.279
0.30	0.162	0.616	0.630	0.236	0.370
0.35	0.215	0.700	0.713	0.306	0.462
0.40	0.272	0.767	0.779	0.378	0.547
0.45	0.333	0.820	0.831	0.450	0.623
0.50	0.395	0.861	0.870	0.520	0.691
0.55	0.457	0.893	0.901	0.586	0.747
0.60	0.518	0.918	0.924	0.648	0.798
0.65	0.576	0.937	0.942	0.703	0.840
0.70	0.631	0.952	0.956	0.753	0.874
0.75	0.681	0.963	0.966	0.796	0.900
0.80	0.727	0.972	0.974	0.833	0.920
0.85	0.768	0.979	0.980	0.865	0.938
0.90	0.804	0.984	0.985	0.891	0.951
0.95	0.835	0.988	0.989	0.914	0.962
1.00	0.863	0.991	0.991	0.932	0.970