Modelling ²⁰Ne-²⁰Ne collisions at the LHC

E. Vasyagina^{1,2}, S. Savenkov^{1,2}, A. Svetlichnyi^{1,2}, I. Pshenichnov^{1,2}

¹Moscow Institute of Physics and Technology ²Institute for Nuclear Research RAS

Outline

- To investigate the origin of the collectivity in the overlap region of light colliding nuclei, the system-size scan program at the LHC was initiated.
- Xe–Xe collisions run were already finished.
- ${}^{16}\text{O}-{}^{16}\text{O}$ and ${}^{20}\text{Ne}-{}^{20}\text{Ne}$ runs are planned [1].
- As demonstrated [2], the production of spectator fragments from initial ¹⁶O nuclei is sensitive to the presence of α -clustered states in ¹⁶O.
- \bullet It is important to investigate whether similar effects are present in $^{20}\mathrm{Ne}^{-20}\mathrm{Ne}$ collisions.
- Spectator neutrons and protons are used to monitor the luminosity of LHC.
- Secondary nuclei with A = 2Z can circulate along with the initial beams.
- 1) R. Alemany Fernandez, PoS **478** (2024) 0335, http://doi.org/10.22323/1.478.0335 2) A.Svetlichnyi et al., Physics, **5** (2023) 381

The exact density profile of 20 Ne is still under discussion:

- 1. Deformed Wood-Saxon non-clustered configuration has been considered [1].
- 2. However, significant contributions of clustered states has been considered as well (bi-pyramidal clustered configuration) [2].

Li, Z. H., Kuang et al., Matter density distributions of ²⁰,²²Ne and ²⁴,²⁶Mg extracted through proton elastic scattering at 0.8 GeV. Phys. Rev. C 107, 064310 (2023).
 Bijker, R., Iachello, F. Cluster structure of ²⁰Ne: Evidence for D3h symmetry. Nucl. Phys. A 1006, 122077 (2021).

1. Deformed Wood-Saxon configuration

• 2pF model was used to describe nuclear matter density:

$$\rho(x, y, z) = \frac{\rho_0}{1 + \exp\left(\frac{r - R(1 + \beta_2 Y_{20}(\theta, \varphi) + \beta_4 Y_{40}(\theta, \varphi))}{a}\right)}$$

• Parameters R and a:

- ²⁰Ne:
$$R = 2.422(67)$$
 fm, $a = 0.592(30)$ fm, $\beta_2 = 0.46$, $\beta_4 = 0.27$.
- ²²Ne: $R = 2.396(170)$ fm, $a = 0.598(66)$ fm, $\beta_2 = 0.42$, $\beta_4 = 0.27$.

Li, Z. H., Kuang et al., Matter density distributions of ²⁰,²²Ne and ²⁴,²⁶Mg extracted through proton elastic scattering at 0.8 GeV. Phys. Rev. C 107, 064310 (2023).

2. Bi-pyramidal cluster configuration

- Clustered state can be described using the bi-pyramidal configuration.
- The parameters $\beta_1 = 2.00$ fm, $\beta_2 = \beta_3 = 2.51$ fm were tuned to describe R, a of the nuclei.
- Alpha clusters are represented using the following harmonic oscilator density distribution:

$$- \rho(r) \propto r^2 \left(1 + a \left(\frac{r^2}{R^2} \right) \right) \exp\left(- \frac{r^2}{R^2} \right)$$
$$- R = 1.68 \text{ fm}, a = 0.544 \text{ fm}.$$

Bijker, R., Iachello, F. Cluster structure of ²⁰Ne: Evidence for D3h symmetry. Nucl. Phys. A 1006, 122077 (2021).

Role of spectators in system-size scan

• ALICE collaboration used Zero Degree Calorimeters to determine collision centrality and monitor collider luminosity by detecting forward neutrons [1].

• Can the same methods be applied to Ne–Ne collisions?

1) B. Abelev et al. (ALICE Collaboration), "Phys. Rev. C., "vol. 88, p. 044909, 2013.

Simulation stages in AAMCC [1]:

- The Glauber Monte Carlo model simulates nucleus-nucleus collisions [2], where spectator matter (prefragment) is formed by non-participating nucleons.
- The excitation energy of the prefragment can be estimated as follows:
 - The Ericson formula based on the particle-hole model [3].
 - The ALADIN parabolic approximation [4] for light and heavy nuclei.
 - A hybrid method: Ericson formula for peripheral collisions and ALADIN otherwise.
- MST clustering with accounting for Coulomb repulsion [5]
- Deexcitation follows Geant4 decay models [6]:
 - $\circ~$ Fermi break-up model.
 - Statistical Multifragmentation Model (SMM).
 - $\circ~$ Weisskopf-Ewing evaporation model.

1) R. Nepeivoda et al., "Pre-Equilibrium Clustering in Production of Spectator Fragments in Collisions of Relativistic Nuclei,"Particles, vol. 5, pp. 40-51, 2022.

- 2) S. Loizides, J. Kamin, D. d'Enterria, "Phys. Rev. C, "vol. 97, p. 054910, 2018.
- 3) T. Ericson, "Advances in Physics,"vol. 9, p. 737, 1960.
- 4) A. Botvina et al., "Nuclear Physics A,"vol. 584, 1995.
- 5) E. Vasyagina et al., PEPAN Lett., in print
- 6) J. Alison et al., "Nucl. Inst. A,"vol. 835, p. 186, 2016.

Model validation with experimental data

- The considered nuclear density profiles of ²⁰Ne, ²²Ne were incorporated in AAMCC to model the ²²Ne+Ag 4.1A GeV collisions.
- The calculated multiplicity distribution of spectator fragments agrees well in general with experimental data [1].
- The underestimation of the Z = 9, 10 fragments can be attributed to electromagnetic dissociation of ²²Ne.
- Here, the impact of the clusterization in ²²Ne is insignificant.

1) Abd-Allah, N. N., Mohery, M. Multiplicity of secondary particles and fragmentation in nuclear interactions of ²²Ne and ³²S nuclei with emulsion at (4.1–4.5) A GeV/c. Czechoslovak J. Phys. 51, 1189–1204 (2001).

- The production of spectator fragments with 2Z = A demonstrates:
 - sensitivity to the clusterization in ²⁰Ne for hydrogen and helium fragments.
 - more helium fragments with clustered configuration in 20 Ne.

 $9 \, / \, 15$

Transverse momentum distribution with 2Z = A.

The effect of the presence of α -clusters in ²⁰Ne on the p_T distributions is negligible.

Longitudinal momentum distribution with 2Z = A.

The effect of the presence of α -clusters in ²⁰Ne on the p_z distributions is negligible.

The production of neutrons and protons.

- A small fraction of events contains neither protons nor neutrons.
- $\bullet\,$ The number of events with large multiplicity of protons and neutrons depends on alpha clustering in $^{20}{\rm Ne}.$

Average number of protons and neutrons in the events in given centrality bins.

More protons than neutrons in peripheral events because neutrons remain bound in fragments.

Production of helium fragments.

More alpha particles are produced in collisions of clustered 20 Ne.

Conclusion

- The impact of the α -clusterization in ²²Ne on the production of spectator fragments with given Z in nuclear emulsion is insignificant due to the presence of two valence neutrons.
- The yields of spectator fragments from ${}^{20}\text{Ne}{-}^{20}\text{Ne}$ collisions at the LHC, in particular, hydrogen and helium, are sensitive to the presense of α -clusters.
- However, the impact of α -clusterization on the p_T and p_Z distributions is insignificant for deutrons and α -particles.
- $\bullet\,$ About 25 % of events contain no spectator neutrons. This may affect the performance of neutron ZDC at the LHC.