Development of the method of reconstruction of neutron energy spectrum with HGND in the BM@N experiment

A. Shabanov, M. Golubeva, F. Guber, N. Karpushkin, S. Morozov, A. Zubankov, P. Parfenov, V. Bocharnikov

Institute for Nuclear Research RAS

03.07.2025

Outlook

- BM@N
- 2 HGND
- 3 Clustering method
- 4 Background
- **5** Energy spectrum reconstruction
- 6 Conclusions

Baryonic Matter at Nuclotron

- Fixed target heavy-ion experiment at Nuclotron in Dubna, Russia
- Beam energy $2 6 \cdot A$ GeV
 - Study of hadronic matter at high baryonic densities

Physical motivation

- Need to study isospin degree of freedom of baryonic matter equation of state
- Neutrons are sensitive to isospin
- Absence of data on neutron yields at $1 10 \cdot A$ GeV

Highly Granular Neutron Detector

- New time-of-flight detector for measurements of neutrons with kinetic energy $T_n \lesssim 4$ GeV
- Alternating plastic scintillator/copper layers
- MPPC directly connected to scintillators
- Time resolution $\sim 150ps$
- High granularity enables precise neutron tracking

MC Simulation

In order to develop and check the algorithm of neutron identification the MC simulation was performed

Simulation parameters

- Bi+Bi at $3 \cdot A$ GeV
- 200 000 events
- DCM-QGSM-SMM model
- Full BM@N geometry

HGND configuration

HGND parameters in simulation

- Two parts mode
- 8 layers of scintillator 11x11 cells
- 7 layers of Cu convertor in between of scintillator layers
- Time resolution 130ps

Clustering method

Algorithm

- Select cells with $E_{kin} > 3MeV$ (noise rejection)
- Merge neighboring cells into clusters
- **3** Calculate $\beta = \frac{1}{c}d/t$ for each cell; the cell with the highest β is labeled as the cluster "head"
- 4 Apply selection criteria

Selection criteria

- No hit in layer 0 (charged particles rejection)
- No hit in layer 1 (γ rejection)
- $\beta < 0.9$ (fast e^+, e^-, γ rejection)
- $T_{reconstructed} > 300 \text{ MeV (secondary neutrons suppression)}$
- Cluster size $N_{cells} \geq 2$

Reconstruction Quality

Performance Metrics

Efficiency =
$$\frac{N_{\text{neutron match}}}{N_{\text{neutrons}}}$$

Purity =
$$\frac{N_{\text{cluster match}}}{N_{\text{clusters}}}$$

A. Shabanov (INR RAS)

Background contribution to the reconstructed energy spectrum

Background composition

- Charged particles (mostly p, π^{\pm})
- \bullet γ
- $n_{secondary}$ (produced or scattered in material)

Reconstructed energy spectrum of background particles vs. primary neutrons

Charged particles

Charged particles produce clusters despite veto applied. Where do they come from?

- Charged particles come through lateral sides
- 2 Charged particles produce secondary clusters

1. Lateral hit

- The particle comes to the HGND through lateral surface
- First cell in cluster lies on border of HGND
- If cluster starts on border, we can reject it

2. Secondary clusters

- p, π^+ , π^- produce γ , n
- γ , n produce secondary clusters deep inside HGND
- There is a gap between primary and secondary clusters
- Secondary cluster is wrongly recognized as neutron
- The secondary cluster starts in the same (row, column) as hit in veto.
- We can reject such clusters

Background after new cuts

Challenges

- After all cuts background remains comparable to signal
- Precise measurement of background is needed to subtract it
- Charged background can be measured by HGND itself
- Measurement of secondary neutrons and photons remains problematic
- Multiple corrections are needed:
 - Efficiency corrections
 - Multiple cluster corrections
 - Detector resolution effects

Subtraction of the background

The charged particle spectrum $f(T_{\rm rec}) \equiv \frac{1}{N} \frac{dN_{\rm charged}}{dT_{\rm rec}}$ can be measured using the HGND veto layer.

The probability $p(T_{\text{rec}})$ for a reconstructed cluster to originate from a charged particle can also be determined with HGND by analyzing time correlations between deep and surface clusters.

The charged particle background contribution $c(T_{rec})$ is then obtained via:

$$c(T_{\rm rec}) = p(T_{\rm rec}) \cdot f(T_{\rm rec})$$
 (1)

Multiple clusters correction

- A single neutron interaction can generate multiple reconstructed clusters
- The mean cluster multiplicity $\langle N \rangle (T_n)$ depends on:
 - The clustering algorithm parameters
 - Neutron kinetic energy (T_n)
 - Impact position $(\bar{N}(\theta)), \bar{N}(\phi)$)
- This multiplicity distribution must be obtained from simulation

Resulting procedure of spectrum restoration

- Clustering
- Cluster selection
- Oistribution building
- Background subtraction
- Open Deconvolution
- Efficiency correction
- Comparison of the results obtained with different algorithms to estimate systematic uncertainty

Conclusions

- Clustering algorithm for neutron identification in HGND has been developed
- Background comparable to signal requires sophisticated handling
- Multiple background rejection techniques have been implemented:
 - Basic cluster selection
 - Lateral particles rejection (border cut)
 - Secondary clusters rejection (veto coincidence)
- Afterward spectrum corrections are being developed:
 - Multiple clusters correction
 - Background spectrum subtraction
 - Deconvolution with detector response function

End

Thank you for your attention!

Front side

- Deposited energy below threshold (3 MeV)
- Particle pass in between cells, too low energy deposited in each cell
- Charged particle can't avoid hit in both veto and 1st layers, probability is negligible

Quality after new cuts

Additional strict criteria improve purity but reduce efficiency. Strong cut:

- Border cell rejection
- Veto layer coincidence check

Background sources

Detector side vs. particle species

Basic selection

Border cut