

LXXV International conference

«Nucleus – 2025. Nuclear physics and elementary particle physics. Nuclear physics technologies.»

Compton suppressed γ-spectrometer based on CeBr₃-NaI(Tl) phoswich detector cluster

Povolotskiy M.A.^{1,2}, Sobolev Yu.G.¹, <u>Stukalov S.S.</u>¹, Penionzhkevich Yu.E.^{1,2}, Salakhutdinov G.Kh.², Naumov P. Yu²

JINR, Joint Institute for Nuclear Research
MEPhI, National Research Nuclear University
E-mail: mark.povolotskiy@gmail.com

History and preconditions

 E_{γ} [MeV]

Giant dipole resonance (GDR) is a highly excited state of atomic nuclei involving a large number of nucleons.

Direct γ -decay of GDR in reactions is accompanied by a γ -cascade with a high multiplicity M_{γ} value.

Pile-up effect

Solution

[1]. Maj A. et al. The PARIS project

The phoswich detector technique allows avoiding the pile-up effect by separating the γ -quanta along their absorption length in the detector material.

CeBr₃-NaI(TI) phoswich-detector

developed and optimized for high-energy γ -ray (GDR, PDR) detection in the PARIS collaboration[2] as a high-efficiency γ -ray detector

Peculiarities of γ -ray emission in reactions with light nuclei

Main idea

The spectrometer must have:

- High registration efficiency of total absorption peak (compared to HPGe) for solving γ -spectrometry problems.
- Energy resolution suitable for γ -spectrometry of reaction with light nuclei products.

Measurement of the suppression coefficient of the Compton part of the γ-spectrum of ¹⁵²Eu

E _γ , keV	(N _{peak} /N _{total}) _{w/o AC}	(N _{peak} /N _{total}) _{AC}	CSF
245	0.0283	0.0363	1.282
344	0.0899	0.1261	1.402
779	0.0184	0.0256	1.391
964	0.0147	0.0214	1.455
1112	0.0258	0.0359	1.391
1408	0.0211	0.0302	1.431

where $\left(\frac{N_{peak}}{N_{total}}\right)_{w/o.AC}$ - the ratio of the number of events in the peak to the total number of events (total) without suppression,

 $\left(\frac{N_{peak}}{N_{total}}\right)_{AC}$ - the ratio of the number of events in the peak to the total number of events (total) with suppression.

Chance coincidence loss

A problem of data (events) loss in the peaks of total absorption[3] due to:

- 1. The presence of cascade transitions in the source.
- 2. High intensity of the radiation source.

[3]. Westphal G. Journal of Radioanalytical and Nuclear Chemistry. -1982. -T. 70. - No. 1-2. -C. 387-410.

Measurement of the suppression factor using the tagged particle method

- 1. Cascade emission of two γ -quanta;
- 2. The tagged particle method was used to measure the absolute detection efficiency.

Measurement of the suppression coefficient of the Compton part of the γ-spectrum of ⁶⁰Co

$$AC = \left(1 - \frac{N_{AC}}{N}\right) * 100\%,$$

where N - the number of events in the Compton region of the spectrum without suppression, and N_{AC} - the number of events in the Compton region of the spectrum with suppression.

		N _{AC} (Phos) , counts	N _{AC} (Phos +CsI), counts		AC (Phos+ CsI) ,%
Phoswich №1	7774	5365	4123	30,987	46,964

Measurement of absolute γ -peak detection efficiency for E_{ν} =1173 keV

12500

E, channel

11000

11500

13000

13500

The tagged particle method was used to measure the absolute detection efficiency.

 $\Sigma_{\epsilon}^{\sim} 21.9\%$

The developed spectrometer will be integrated into the MULTI setup[4], enabling the detection of reaction products involving light neutron-rich nuclei.

Key Objectives of the Anti-Compton Spectrometer:

- Detection of low-energy γ -rays (from nuclear de-excitation).
- Suppression of Compton scattered events from γ-rays.
- The registration of fast neutrons with energies comparable to the beam energy, measured using the time-of-flight (ToF) method.

[4]. Siváček I. et al. //Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. – 2020. – T. 976. – C. 164255

LXXV International conference

«Nucleus – 2025. Nuclear physics and elementary particle physics. Nuclear physics technologies.»

Thank you for your attention!

Povolotskiy M.A.^{1,2}, Sobolev Yu.G.¹, <u>Stukalov S.S.</u>¹, Penionzhkevich Yu.E.^{1,2}, Salakhutdinov G.Kh.², Naumov P. Yu²

JINR, Joint Institute for Nuclear Research
MEPhI, National Research Nuclear University
E-mail: mark.povolotskiy@gmail.com

Tagged Neutron Method

- Since the detector lacks pulse-shape discrimination (PSD) capability for n-γ separation, the Time-of-Flight (TOF) method was employed.
- The detection efficiency $\varepsilon(E_n)$ for phoswich scintillation detectors was measured using the tagged neutron method with a ²³⁹Pu/⁹Be neutron-gamma source and a trigger detector.
- The trigger detector was used to register gamma rays with $E_{\gamma} = 4.44$ MeV emitted from the ²³⁹Pu/⁹Be source.

Data processing

For absolute time calibration relative to physical start of every event we used the TOF method. γ -coincidence peak was used to calculate the start of event. That information further was used to calculate neutron energy.

Results

- The results in the left graph demonstrate the main advantage of the CeBr₃-based scintillation detector the flat dependence of detection efficiency on neutron energy with an average value of $<\epsilon>\sim29\%$.
- The efficiency versus threshold dependence, shows the importance of minimizing this parameter.