LXXV International conference «Nucleus – 2025. Nuclear physics and elementary particle physics. Nuclear physics technologies.» # Compton suppressed γ-spectrometer based on CeBr₃-NaI(Tl) phoswich detector cluster Povolotskiy M.A.^{1,2}, Sobolev Yu.G.¹, <u>Stukalov S.S.</u>¹, Penionzhkevich Yu.E.^{1,2}, Salakhutdinov G.Kh.², Naumov P. Yu² JINR, Joint Institute for Nuclear Research MEPhI, National Research Nuclear University E-mail: mark.povolotskiy@gmail.com ## History and preconditions E_{γ} [MeV] Giant dipole resonance (GDR) is a highly excited state of atomic nuclei involving a large number of nucleons. Direct γ -decay of GDR in reactions is accompanied by a γ -cascade with a high multiplicity M_{γ} value. Pile-up effect #### Solution [1]. Maj A. et al. The PARIS project The phoswich detector technique allows avoiding the pile-up effect by separating the γ -quanta along their absorption length in the detector material. ## CeBr₃-NaI(TI) phoswich-detector developed and optimized for high-energy γ -ray (GDR, PDR) detection in the PARIS collaboration[2] as a high-efficiency γ -ray detector ## Peculiarities of γ -ray emission in reactions with light nuclei ### Main idea The spectrometer must have: - High registration efficiency of total absorption peak (compared to HPGe) for solving γ -spectrometry problems. - Energy resolution suitable for γ -spectrometry of reaction with light nuclei products. ## Measurement of the suppression coefficient of the Compton part of the γ-spectrum of ¹⁵²Eu | E _γ , keV | (N _{peak} /N _{total}) _{w/o AC} | (N _{peak} /N _{total}) _{AC} | CSF | |----------------------|--|--|-------| | 245 | 0.0283 | 0.0363 | 1.282 | | 344 | 0.0899 | 0.1261 | 1.402 | | 779 | 0.0184 | 0.0256 | 1.391 | | 964 | 0.0147 | 0.0214 | 1.455 | | 1112 | 0.0258 | 0.0359 | 1.391 | | 1408 | 0.0211 | 0.0302 | 1.431 | where $\left(\frac{N_{peak}}{N_{total}}\right)_{w/o.AC}$ - the ratio of the number of events in the peak to the total number of events (total) without suppression, $\left(\frac{N_{peak}}{N_{total}}\right)_{AC}$ - the ratio of the number of events in the peak to the total number of events (total) with suppression. #### Chance coincidence loss A problem of data (events) loss in the peaks of total absorption[3] due to: - 1. The presence of cascade transitions in the source. - 2. High intensity of the radiation source. [3]. Westphal G. Journal of Radioanalytical and Nuclear Chemistry. -1982. -T. 70. - No. 1-2. -C. 387-410. # Measurement of the suppression factor using the tagged particle method - 1. Cascade emission of two γ -quanta; - 2. The tagged particle method was used to measure the absolute detection efficiency. ## Measurement of the suppression coefficient of the Compton part of the γ-spectrum of ⁶⁰Co $$AC = \left(1 - \frac{N_{AC}}{N}\right) * 100\%,$$ where N - the number of events in the Compton region of the spectrum without suppression, and N_{AC} - the number of events in the Compton region of the spectrum with suppression. | | | N _{AC} (Phos)
, counts | N _{AC} (Phos
+CsI), counts | | AC (Phos+
CsI) ,% | |----------------|------|------------------------------------|--|--------|----------------------| | Phoswich
№1 | 7774 | 5365 | 4123 | 30,987 | 46,964 | # Measurement of absolute γ -peak detection efficiency for E_{ν} =1173 keV 12500 E, channel 11000 11500 13000 13500 The tagged particle method was used to measure the absolute detection efficiency. $\Sigma_{\epsilon}^{\sim} 21.9\%$ The developed spectrometer will be integrated into the MULTI setup[4], enabling the detection of reaction products involving light neutron-rich nuclei. ## **Key Objectives of the Anti-Compton Spectrometer:** - Detection of low-energy γ -rays (from nuclear de-excitation). - Suppression of Compton scattered events from γ-rays. - The registration of fast neutrons with energies comparable to the beam energy, measured using the time-of-flight (ToF) method. [4]. Siváček I. et al. //Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. – 2020. – T. 976. – C. 164255 #### LXXV International conference «Nucleus – 2025. Nuclear physics and elementary particle physics. Nuclear physics technologies.» ### Thank you for your attention! Povolotskiy M.A.^{1,2}, Sobolev Yu.G.¹, <u>Stukalov S.S.</u>¹, Penionzhkevich Yu.E.^{1,2}, Salakhutdinov G.Kh.², Naumov P. Yu² JINR, Joint Institute for Nuclear Research MEPhI, National Research Nuclear University E-mail: mark.povolotskiy@gmail.com ### Tagged Neutron Method - Since the detector lacks pulse-shape discrimination (PSD) capability for n-γ separation, the Time-of-Flight (TOF) method was employed. - The detection efficiency $\varepsilon(E_n)$ for phoswich scintillation detectors was measured using the tagged neutron method with a ²³⁹Pu/⁹Be neutron-gamma source and a trigger detector. - The trigger detector was used to register gamma rays with $E_{\gamma} = 4.44$ MeV emitted from the ²³⁹Pu/⁹Be source. ## Data processing For absolute time calibration relative to physical start of every event we used the TOF method. γ -coincidence peak was used to calculate the start of event. That information further was used to calculate neutron energy. #### Results - The results in the left graph demonstrate the main advantage of the CeBr₃-based scintillation detector the flat dependence of detection efficiency on neutron energy with an average value of $<\epsilon>\sim29\%$. - The efficiency versus threshold dependence, shows the importance of minimizing this parameter.