

Performance and operational experience of ALICE FIT in LHC Run 3

Tatiana Karavicheva, on behalf of the ALICE Collaboration

Joint Institute for Nuclear Research, Dubna

Institute for Nuclear Research of the Russian Academy of Sciences, Moscow

LXXV International Conference «NUCLEUS – 2025», 1-6 July, Saint Petersburg

A Large Ion Collider Experiment: Run 3

ALICE → dedicated heavy-ion experiment at the LHC

Motivation

• High-precision measurements of quark-gluon plasma (QGP) properties and beyond with continuous readout

• Need to record large minimum-bias data sample

• Readout all Pb-Pb interactions up to the maximum collision rate of 50 kHz

Goal

- Pb-Pb integrated luminosity > 10 nb⁻¹ in Run 3 and Run 4 (plus pp, p-O and O-O data)
- Gain factor 100 in statistics for minimum-bias sample with respect to Run 1 and Run 2
- Improved vertex reconstruction and tracking capabilities

ALICE upgrades in Long Shutdown 2 (LS2)

New O² Framework and Trigger system

- Faster online and offline (O²) processing Increased data volume x100 w.r.t. Run 2
- Continuous read-out allows to implement custom software triggers

New Inner Tracking (ITS)

- 7 layers of silicon pixel detectors with reduced material budget
- First detection layer closer to IP + new beam pipe (ITS L0 at 22 mm)

New Time Projection Chamber (TPC)

- Tracking, PID (dE/dX)
- MWPCs replaced with GEMs
- Continuous readout up to 50 kHz
- Pb-Pb interaction rate (x50 w.r.t. Run2)

New Fast Interaction Trigger (FIT)

- Triggering
- Collision time
- Event plane, centrality

New Muon Forward Tracker(MFT)

• Gives the muon system access to the vertex

Fast Interaction Trigger layout & purpose

Three different sub-detectors – FT0, FV0 and FDD with different particle detection technology, located on both opposite sides of the interaction point (IP)

See also M.Sukhanov 's talk

Online

- ➤ ALICE luminometer and trigger detector (FT0,FDD,FV0)
- ➤ LHC background monitoring (FT0,FDD)
- ➤ Background rejection (FT0)

Offline

- ➤ Vertex trigger for event selection (FT0)
- Collision-time and vertex measurement (FT0)
- > Forward multiplicity/centrality (FV0,FT0)
- > Event plane of heavy-ion collisions (FV0,FT0)
- ➤ Veto for ultra-peripheral collisions (FT0,FDD,FV0)
- Cross section determination in VdM scans (FT0,FDD,FV0)

FIT design constraints

- Brand-new subsystem of the upgraded ALICE for the LHC RUN 3 & 4 (2022 onwards);
- BC-per-BC* readout capability (dead time ~15 ns);
- **Minimal latency** trigger decisions in less than 425 ns from the collision (150 ns cabling delay included);
- Efficient running at **full LHC Pb-Pb collision rate** (50 kHz);
- Tolerance to the solenoid field B=0.5~T and harsh radiation conditions (~ $10^{13}~1$ -MeV- n_{eqv} / cm², ~0.5~Mrad);
- Operability outside the LHC's "stable beams" mode.

*BC – Bunch Crossing interval (25 ns)

FT0 – the FIT Time-zero detector

- Two arrays of Cherenkov counters;
- 96+112 quartz radiators coupled to 52 multianode microchannel plate-based PMTs (MCP-PMTs) for the best time resolution;
- First massive application of the Planacon® MCP-PMTs in HEP;
- Each channel equipped with individual inputs of the optical monitoring system based on a picosecond laser.

FT0-C half – front view

FT0-C half – back view

Planacon upgrade for ALICE FIT – NIM A 952 (2020) 161689

Bench testing of the ALICE FIT Planacons – JINST 16 (2021) P12032

NUCLEUS-2025 T.Karavicheva

FIT solution for Planacon modification

We have designed custom internal PCBs for Planacons – they were installed to FIT devices by the manufacturer:

- Common output and its load resistance are eliminated → no positive cross-talk → rising edge is never distorted;
- Signals from 16 individual outputs go directly to the MMCX jack for quadrant signal output → no additional PCB for signal collection;
- Equalized connection length → **better time resolution** when wide light spots are detected;
- Optimized traces length and ground plane location at the most inner PCB → twice smaller anode capacitance → smaller crosstalks between anodes, higher amplitude-to-charge ratio;
- No resistors inside HV port → unit thickness reduced to 27 (23) mm;
- In-line 75 Ω resistors to reduce Q-factor of anodes LC-circuit.

*only 16 out of 64 channels shown.

Default design

FV0 – the FIT Vertex-zero detector

- Circular arrays of plastic scintillator tiles with novel light collection technique;
- Clear plastic fibers in direct optical contact with the scintillator back plane non-WLS for the better timing;
- Fine-mesh PMTs: H6614-70-Y001, B-field immunity;
- High signal rate capacity;
- Keep pulses width < 25 ns;
- Time resolution: 200-250 ps @ 1 MIP.

On the novel light collection technique – arXiv:1909.01184v1X

FDD – the FIT Forward Diffractive Detector

- Double-layered plastic scintillator read out by fine-mesh PMTs through WLS plastic bars and clear fibers (coincidence mode);
- Fine-mesh PMTsH8409-70: B-field immunity, good timing, high signal rate capacity;
- Fast wavelength-shifting bar: 1 ns re-emission time, NOL-38;
- Light transport by clear fiber bundles: Kuraray PSM-Clear.

Architecture of FIT electronics

- Fully integrated system based on an amplifier, a CFD, on-board TDC/ADCs and FPGA processors; digital trigger processing and GBT based read-out.
- Trigger decision based on digitized data (after TDCs & ADCs)
- No active elements near the sensor
 - Limited access, radiation hardness issues
- Low-attenuation, double-shielded signal cables
 - Shortest possible cable length

FIT trigger menu

FT0/FDD	FV0
Trigger mode: (A+C) or (A&C)	-
OrA (at least one fired channel on A side)	OrA (at least one fired channel on A side)
OrC (at least one fired channel on C side)	Nchan (# fired channels in event > nchan_threshold)
SCen (chargeA+chargeC > scen_threshold)	Charge (total charge > chrg_threshold)
Cen (chargeA+chargeC > cen_threshold)	ChargeInnerRings (charge in 3 inner rings > chrgin_threshold)
Vertex (-1.3 < (timeC-timeA) < 1.3 ns)	ChargeOuterRings (charge in 2 outer rings > chrgout_threshold)

- ☐ FT0 Vertex minimum bias trigger for luminosity monitoring in pp collisions
- ☐ FT0 (SCen || Cen) minimum bias trigger in Pb-Pb collisions
- ☐ FT0 Cen and FV0 Charge high multiplicity triggers in Pb-Pb collisions

MCP-PMT ageing after two full years of operation

A-side

MCP-PMT response (June 2024 /

C-side

- The innermost MCP-PMT quadrants' gain & photocathode Q.E. dropped 50% after collecting 1 C/cm²
- As expected, the **outer quadrants**' ageing is visible but considerably smaller
- To compensate for the gain loss, HV is increased
 - It is one of the benefits of low-gain MCP-PMT operation

Detector ageing

Ageing is proportional to the Integral Anode Charge (IAC) – **distinct from radiation damage**;

Smooth ageing trends versus IAC:

The only outlier here suffered from accelerated ageing caused by a vacuum microleak

*background contribution unaccounted, but small.

NUCLEUS-2025 T.Karavicheva

A-side annealing/recovery during the 2023 YETS

- The newly observed annealing effect occurred during the 2023 YETS
- After 160 days without a beam, aged MCP-PMTs self-recovered noticeably
- Response recovers monotonously and permanently (ageing of the recovered device is no faster than of a new one).

Detector technology limits – rate capability

- Rate capability of MCP-PMTs naturally limited by the MCP resistance:
 - 100 nA/cm² for standard Planacons;
 - 800 nA/cm² for XP85002/FIT-Q devices (JINST);
 - further reduced x2 inside 0.5T B-field.
- 50 kHz Pb-Pb corresponds to ~7x10⁶ particle hits per second in each of the most occupied FT0 channels:
 3x10⁸ photo-electrons/cm² → 600 nA/cm².
- Signal rate affects gain of the photosensors → efficiency of the "hottest" channels at highest Pb-Pb rates.

50 kHz

FIT performance in pp & Pb-Pb data taking

FIT performance in pp – FT0

 $\sigma = 17 \text{ ps} = \pm 5.1 \text{ mm}$ – precision of the determination of the collision point in pp collisions;

Good correlation with the primary vertex reconstructed from the inner barrel tracker.

FIT performance in Pb-Pb – FT0, FV0

 $\sigma = 4.4$ ps – precision of the determination of the collision point in Pb-Pb collisions;

Good correlation with the primary vertex reconstructed from the inner barrel tracker.

Good correlation between FIT detectors measuring the multiplicity of events

FIT performance in pp – FT0,FDD

FT0/FDD vertex vs FT0/FDD collision time correlation in pp at 13.6 TeV

Good vertex and collision time calculation at forward and very forward pseudorapidity regions.

FT0 trigger performance in pp

- Good agreement between MC and data
- Centrality triggers not yet included in MC
- FT0 performed well in 2023 and 2024

FT0 performance – collision time

A measurement of the separation between particle species ($t_{TOF} - t_{exp} - t_{ev}$) generated by using the event times acquired from the **TOF** and **FT0** detectors:

- Well separated pions and kaons peaks;
- TOF time resolution $\sigma_{TOF} = (81.7\pm2.7)$ ps;
- FT0 time resolution $\sigma_{\text{FT0}} = (17.35 \pm 0.03) \text{ ps.}$

FTO - Estimation of centrality/multiplicity class

Centrality classification

Pb-Pb: Performing NBD Glauber fit to measured FT0C amplitude

pp: Multiplicity classes are determined by the signal sum of FT0A and FT0C

NUCLEUS-2025 T.Karavicheva 2

FT0 - Estimation of multiplicity class

The multiplicity-dependent results (preliminary) for all multiplicity classes:

- Multiplicity classes determined by sum of FT0-A and C signals (FT0M percentiles)
- Good input for various particle production models

FTO - Estimation of centrality class

New result of dNch/dη in different centrality classes:

- Centrality classes determined by sum of FT0-C signals (FT0C percentiles)
- New result of $dN_{ch}/d\eta$ agrees well with the measurements of CMS for both 0-80 % and 0-5% centrality classes within $|\eta| < 1$

ALI-PUB-602538

Run 3 statistics and 2025/2026 schedule

Goals for 2025-2026

- •47 pb⁻¹ expected
- •3 pb-1 low field

•2.6 nb-1 expected

•~2.5 nb⁻¹ expected

1 day + maybe
 one day of Ne-Ne

- •2 billion (Run1+2)
- •5700 billion (2022-2024)

•~150 nb-1 expected

*for central barrel only (MB)

**expected in 2025

Conclusions

- New FIT detector was installed in ALICE during the LS2
- FIT is operational since the first day of Run 3
- The use of a modified MCP-PMT has made it possible to ensure:
 - Remarkable timing precision of $\sigma = 17.4$ ps in pp collisions and $\sigma = 4.4$ ps in Pb-Pb collisions;
 - Ageing balanced by HV increase without timing deterioration beyond 1 C/cm² IAC;
 - Handling photon fluxes of up to 3*10⁸ p.e./cm²/s;
 - Self-annealing of aged channels newly observed effect.
- First massive application of the Planacon® MCP-PMTs in HEP
- Excellent performance observed in both pp and Pb-Pb collisions:
 - As luminometer FIT provides important trigger counts of physics events
 - Multiplicity measured by FIT in forward region is used for centrality/ multiplicity determination in Run 3
 - Collision time is important measurable value for PID analysis via TOF detector

NUCLEUS-2025 T.Karavicheva

Thanks a lot for your attention!

FIT Movies

English

https://rutube.ru/video/7fd5631466ad0b38c22cd860cd65c4db/

https://rutube.ru/video/8a60c49f24912e4219f5b2734a04d0a7/

T.Karavicheva NUCLEUS- 27

Back-up slides

Detector technology surprises – MCP-PMT "self-annealing"

- No ageing → no annealing;
- More ageing → more annealing (true at moderate ageing);
- Strong ageing → notable annealing.

Luminosity determination

- Luminosity determination in ALICE is based on the measurement of visible cross sections in van derMeer (vdM) scans
 - In vdM scans, the two beams are moved across each other in the x (horizontal) and y (vertical) directions
 - The rate of the reference (visible) process is measured as a function of the transverse beam separations
 - vdM scan -based luminosity calibration requires a detailed data-taking and analysis procedure to have good control of several subtle effects
- New ALICE luminometers :
 - Fast Interaction Trigger system;
 - Upgraded ZN read-out.
- Run 3 luminosity signals:
 - **FT0 Vertex** minimum bias trigger for luminosity monitoring in **pp** collisions :
 - Trigger purity;
 - Not sensitive to particles coming from backward direction;
 - Not triggered by satellites.
 - FT0 (SCen || Cen) minimum bias trigger in Pb-Pb collisions
 - FT0 Cen and FV0 Charge high multiplicity triggers in Pb-Pb collisions
 - Neutron emission at beam rapidity: **ZNA**, **ZNC**
- Background monitoring:
 - **FT0** uses non-colliding bunches (non Beam-Beam bunch mask)

VdM scan analysis for Run-3 is currently ongoing

FT0 BC selection

- In **Run 2** converted data BCs and collisions have one-to-one correspondence, but there is no such feature in **Run 3**
- Collision time is not known precisely (up to ~100 bc uncertainties)
- Event selection tries to find closest bc with FT0 Vertex trigger (FT0-vertex activity) to account for the ambiguity of the BC collision:
 - Works well at low IR (typical TVX efficiency ~ 90%)

ALIÇE

13.6 TeV

- New pp results in 13.6 TeV, follows the power law trend
- ho $\langle {\rm d}N_{\rm ch}/{\rm d}\eta \rangle \propto s^a$ expected at LHC energy

NUCLEUS-2025 T.Karavicheva 32

ALICE

pprox Multiplicity dependent $\mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta$

multiplicity classes determined by sum of FT0-A and C signals (FT0M percentiles)

	Rapidity coverage
FT0-A	$3.5 \le \eta \le 4.9$
FTO-C	$-3.3 \le \eta \le -2.1$

- $ightharpoonup \langle \mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta \rangle$ increases with decreasing FT0M percentile.
- $ightharpoonup \langle \mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta \rangle$ is ~5 times larger for 0-1% than for 70-100%
- Input for vs multiplicity studies using other per-event observables (particle yield, $\langle p_{\rm T} \rangle$)

NUCLEUS-2025 T.Karavicheva 33

Centrality determination

Fast Interaction Trigger

- Cherenkov (FT0) detector
- Used for collision time, event selection and centrality estimation
- ❖ FT0C (-3.3 < η < -2.1)

Glauber model

 $\rho(r) = \rho_0 \frac{1 + w(r/R)^2}{1 + \exp(\frac{r-R}{a})}.$

Nuclear radius $R = 6.62 \pm 0.06$ fm Skin thickness $a = 0.546 \pm 0.010$ fm $\sigma_{\text{INEL}} = 68.2 \pm 0.6$ mb

Two-component model

$$N_{\text{sources}} = f \times N_{\text{part}} + (1 - f) \times N_{\text{coll}}$$

Particle produced by each source is parameterised by NBD

The NBD-Glauber fit provides a good description of data