Contribution ID: 91

Type: Oral

Recent theoretical investigation for the synthesis of superheavy elements using the DNS model

Thursday 3 July 2025 15:20 (20 minutes)

Recent research has primarily focused on fusion reactions induced by heavy-ion collisions involving projectiles such as 51 V and 50 Ti as potential pathways to extend the known isotopic ranges and to explore new elements. The synthesis pathways of superheavy elements are modeled using the dinuclear system (DNS) approach [1, 2]. The DNS model comprehensively calculates the capture cross section and fusion cross sections, incorporating nuclear structure effects, deformation, and shell corrections that significantly impact fusion probability.

 $_{ER}(E_{c.m.},\ell) = _{cap}(E_{c.m.},\ell) \cdot P_{CN}(E_{c.m.},\ell) \cdot W_{sur}(E_{c.m.},\ell).$ (1) The reactions ⁵⁰Ti+²⁴⁴Pu and ⁵⁰Ti+²⁵¹Cf were examined theoretically, highlighting their potential for the synthesis of elements 116 and 120. ER cross sections for the ⁵⁰Ti+²⁴⁴Pu reaction, displaying a peak cross section in the 4n neutron evaporation channel at $_{ER}$ =0.58 pb, closely aligning with experimental results from recent studies [3]. For the ⁵⁰Ti+²⁵¹Cf reaction aimed at synthesizing element 120, significant cross sections of 0.34 pb and 0.23 pb were predicted for the 3n and 4n channels respectively, highlighting this reaction as a promising candidate.

Theoretical predictions for the synthesis of element 119 through the ⁵¹V+²⁴⁸Cm reaction indicate a maximum evaporation residue cross section of 12.3 fb at the center-of-mass energy of 232 MeV for the 4n evaporation channel [4]. These results are consistent with prior theoretical predictions, underscoring the reliability and predictive capability of the DNS model in guiding experimental searches for new superheavy elements.

References

[1] A. Nasirov, A. Fukushima, Y. Toyoshima, Y. Aritomo, A.Muminov, S. Kalandarov, and R. Utamuratov, Nucl. Phys. A 759, 342 (2005).

[2] A. K. Nasirov, A. R. Yusupov, B. M. Kayumov, Phys. Rev. C 110, 014618 (2024).

[3] J. M. Gates, R. Orford, D. Rudolph, et al., Phys. Rev. Lett. 133, 172502 (2024).

[4] A. Nasirov, B. Kayumov, Phys. Rev. C 109, 024613 (2024).

Primary author: KAYUMOV, Bakhodir (New Uzbekistan University)

Co-author: Prof. NASIROV, Avazbek (Joint Institute of Nuclear Research)

Presenter: KAYUMOV, Bakhodir (New Uzbekistan University)

Session Classification: 2. Experimental and theoretical studies of nuclear reactions

Track Classification: Section 2. Experimental and theoretical studies of nuclear reactions.