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INTRODUCTION



A model with a new type of dynamics was introduced by Vicsek in order to reproduce
the emergence of self-ordered motion, aggregation and clustering in systems of
particles with complex interaction (Phys.Rev.Lett.75, 1995).

This compelling discrete-time model of cooperative motion shows that the nearest
neighbor rule can cause some number of particles move in same direction despite
the absence of centralized coordination and despite the fact that each set of nearest
neighbors change with time as the system develops.

Friedkin, Noah E., Anton V. Proskurnikov, Roberto Tempo, and Sergey E. Parsegov.
Network science on belief system dynamics under logic constraints
Science 354, no. 6310 (2016): 321-326.

Vicsek-type physics is a field concerned with systems as diverse as synthetic self-
propelled colloids, groups of small robots, mixtures of biofilaments and motor
proteins, eukaryotic cells, swimming sperm or bacteria, and animal flocks.

A Jadbabaie, J Lin, AS Morse
Coordination of groups of mobile autonomous agents using nearest neighbor rules
IEEE Transactions on automatic control 48 (6), (2003): 988-1001




A fundamental concern for networked cooperative dynamical systems is the study of
their interactions and collective behaviors under the influence of the information flow
allowed in the communication network. This communication network can be modeled
as a graph with directed edges or links corresponding to the allowed flow of
information between the systems. The systems are modeled as the nodes in the
graph and are sometimes called agents. Information in communication networks only
travels directly between immediate neighbors in a graph. Nevertheless, if a graph is
connected, then this locally transmitted information travels ultimately to every agent in
the graph.

Various terms are used in literature for phenomena related to the collective behavior
on networks of systems, such as flocking, consensus, synchronization, frequency
matching, formation, rendezvous, and so on. The nature of synchronization in
different groups depends on the manner in which information is allowed to flow
between the individuals of the group.

The engineering study of multi-agent cooperative control systems uses principles
observed in sociology, chemistry, and physics to obtain synchronized behavior of all
systems by using simple local distributed control protocols that are the same for each
agent and only depend on that agent’s neighbors in the group.



Graph Laplacian Potential and
Multi-Agent Systems

Nuclear interacting particle system could be represented by a network where the
nodes stand for particles and the edges stand for interaction between the
particles.

For networked multi-agent systems, there is an energy-like function, called the
graph Laplacian potential, that depends on the communication graph topology.
The Laplacian potential captures the notion of a virtual potential energy stored in
the graph.

The system of interacting particles is described by the multi-agent system where
each particle is represented by an agent. The system is modelled by a distributed
network where each agent depends only on information about the agent and its
neighbors.

As a kind of energy, zero Laplacian potential implies a steady-state condition of
the graph, which under certain conditions is equivalent to consensus of all agents.



Networked Spring-Mass System

Potential energy often means the energy stored in
a spring or in a potential field,

such as the gravity field or the electric field, when
work is done to stretch a spring

or against the potential field.

If a spring, with the spring constant k, is stretched by a length of x, then the potential
energy stored in the spring is % kx2.

Consider a networked spring-mass system, three point masses linked by three
springs, as shown in the Figure. Suppose the ideal free lengths of these springs are
all zero. Then, the potential energy P, stored in these springs is

1 — 1 — 1 —
P, =§k1 lab |’ +5k2 lac +5k3 | be |7,

where k;, k,, and k;are the spring constants, and ab, ac, and bc
are the lengths between each two masses.

The “potential energy” for a multi-agent system can be treated as the virtual energy
stored in a graph, and thus is called the graph Laplacian potential. In this case, the
nodes are connected not by springs, but communication links with edge weights.



Strogatz SH
Exploring complex networks.
Nature 410 (2001): 268-276

“‘Are there any unifying principles underlying their
topology? From the perspective of nonlinear dynamics,
we would also like to understand how an enormous
network of interacting dynamical systems — be they
neurons, power stations or lasers — will behave
collectively, given their individual dynamics and
coupling architecture”



NUCLEON CLUSTERING MODELLING



Extended Vicsek-type Model

t+1 _ Ut t t t t trt t
X = X + Z; + Ya E CBU(XJ' — X ) — Yr E Cr_,'j(Xj — X; )
JEN! jEN

The state x/, ; of the ith particle at time instant t + 1 is equal to
its state x| at the previous moment at time instant t, plus the
influence of external disturbance zf, plus the influence of
interaction with neighboring particles j € N}, where N is the set
of neighboring particles of particle / at time t.

. 1, if there is an attraction between particles / and j
caj; =
J 0, otherwise
; 1, if there is a repulsion between particles / and j
J 0, otherwise

v, and ~, are attraction and repulsion coefficients correspondingly.
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Multiagent System

Multiagent systems recently have become a popular tool in

modelling and studying of complex natural and societal processes.

In a complex system composed of a large amount of elements
(agents) a clustering phenomenon is an interesting subject for
Investigation.

For instance, it could allow to describe a state or behaviour of
complex system in a simpler way.
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Agent Dynamics

Assume agent i is described by its state x7. Consider a set of
agents N, that are connected in some way. The connections could
be given in terms of graphs. Construct graph G = {N, E*, C*}
where the set of nodes N stands for the particles, set of edges E*
denotes inter-agent connections, and matrix C* is an adjacency (or
connectivity) matrix of graph G.

I-th agent state dynamics can be described by equation:

t+1 ot t t
X; = X; _|_Z; ‘|‘Ul', (1)
where z! stands for the disturbance (external or internal) affecting
the agent; and u! stands for the change of the agents state due to
interaction with the connected agents.
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Agent Interaction

Clustering in a system occurs when some groups of agents
synchronize their characteristics.

An interaction between agents leading to synchronization of their
states could be as follows:

—’ch (X7 —xi

where v € [0,1] is the gain coefficient, and ch iIs the element of a
connectivity matrix Ct:

; 1, there is a connection between agents / and J

I,J .
/ 0, otherwise

In simple words, agent i “looks” at its neighbors and adjusts its
own state according to the average of the neighbors’ states.
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Graph Laplacian

Denote L(C) = diag(C - 1) — C graph Laplacian,

where C is an adjacency matrix of graph G, 1 is a vector with all
elements equal 1, C -1 is a vector consisting of row-sums of matrix
C, diag(C - 1) is a diagonal matrix with elements of vector C on
the diagonal.

Graph Laplacian plays an important role in analysis of multiagent
system since its properties describe the system behaviour.

Ao is the second largest eigenvalue (also called Fiedler eigenvalue)
which characterizes the connectivity of graph G. The larger
number of edges in graph G are present, the larger value \» takes.

Another important property of graph Laplacian is the number of its
zero eigenvalues. This number corresponds to the number of the
graph components (or connected subgraphs of graph G).
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Multiagent System Dynamics

A system of agents’ states dynamics x/*+

written in vector—matrix form:

f

X;H_l_x —I_Z ‘|"YZ =1 f,_](X _X)

XfH_l_X —l_Z _|_,-)/Z =1 f_] X; _’}/ZJ 1 .’?_j :

Denote X' = (xq, ... ,f)T 7t = (zf,...zt)T vectors, consisting of
stacked up (vector or scalar) agents' states x and disturbances z'.
Xt = Xt + Zt + yCt Xt — diag(yCt - 1)) X!

using the notion of graph Laplacian we get:

Xt = Xt + 7t — yL(CH)X?

:xf—l—zf—l— uf can be

Xt = (I —yL(CH))X! + Z8. (2)
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Assumptions

Consider the following assumptions for a basic result in multiagent
system behaviour.

Al Graph G has a spanning tree (i.e. it is connected).

A2 disturbances z! and inter-agent connection occurrence cfj are

random variables independent of each other; z', i=1...N
are i.i.d: cfj, i=1...N arei.i.d; z' are zero mean with
bounded variance o, variance of cfj Is bounded.

A3 gain coefficient v < %
where matrix Q = E ((L(Ct) — EL(Cf))T (L(C?) — EL(Ct)))

can be thought of as ‘“variance” of L(C?).
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Theorem

If Assumptions A1-A3 are satisfied then for trajectory of
system (2) the following inequality holds:

— A — A
EHXH—l o Xf—|—11n||2 <= 4 (1 o p)t (XO . X01n||2 o _) ’
p p

where 1, is n-vector of ones,
p = yRe(A2(L(CY))) — ¥’ Amax(Q),
A = ncrg,

and X* is a trajectory of the averaged system X =1, -+ > "  xI.
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In short, the theorem states that in case gain v is not too large
(agents do not “overreact”), all assumptions regarding random
variables are satisfied, and the network graph is connected, all
agents synchronize their states.

If assumption Al is not met (i.e. the graph is not connected), but
other assumptions are satisfied, the clustering behaviour takes
place. We can consider different graph components as separate
systems that will reach synchronization.
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Considered Model

Assume vector x; € R denotes the characteristics of particle

i € N. Neighboring particles in a considered volume interact with
each other. The connections among the neighboring particles could
be represented by graph G = {N, &%, C'}. But the model should
also account for particle repulsion that occurs at close distance.
We consider two connectivity matrices: Ca' denoting “attraction
neighbors” (i.e. neighboring particles that are attracted but are not
too close to be repelled) and Cr* denoting repulsion connections of
the particles that are close enough to be affected by repulsion
forces.
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Model Parameters

The considered model have the following parameters.

Set of vertices N denoting particles i, i € N.

Attraction connectivity matrix Ca’ with elements ca; ij=71in
case the particles / and j are attracted but not too close to be
repelled and cajj = 0 otherwise. Ca’ is constructed based on

radius of attraction r; and radius of repulsion r,.

Repulsion connectivity matrix Cr’ with elements cr/ ii=1Lin
case the particles / and j are close enough to be repelled and
crij = 0 otherwise. Cr' is constructed based on radius of
repulsion r,.

Attraction and repulsion gain coefficients v, and ~, that
account for the relative values of attraction and repulsion
forces.

An external disturbance z; affecting particle x;.
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System Dynamics Model

The dynamics of the system of particles is given by the following
set of A equations in discrete time:

t+1 _ Ut t t t t t(t t
X; T =X Tzt 7a E caj(xj —xi) = E cr(xi —Xxi).

JEN} JEN}
Define the R"™-valued vectors X; = {x1,...,Xm} and
Z, ={z1,...,zm} composed of corresponding vectors x{ and z/.

The system dynamics in matrix form:

Xi'+1 — Xi' -+ (I — '}/L(Cat) —+ ')/L(Crt))xt -+ Zt.
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SIMULATION RESULTS



Nucleon Clustering Modelling 1325n

A = 132; — number of particles
Z = 50; — number of protons
T = 80; — simulation time (number of time instants)

r_attr = 2; — radius of particle attraction
r_rep = 1; — radius of particle repulsion

gamma_attr = 0.001; — scale parameter of particle attraction
gamma_rep = 0.1; — scale parameter of particle repulsion

initial values of particle parameter values are set randomly
Z — particle parameter values fluctuation
simulation: small constant disturbance,

Z € [-0.001, 0.001];
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Cluster Stabilization
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Attraction and repulsion potentials change due to consensus
achievement between the particles. Since the distance shortens, the
attraction potential reduces and repulsion potential grows until the
system reaches the state of dynamical equilibrium.




“Volume” of Interacting Particle System
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W |s a sum of distances between particles
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Nucleon Clustering Modelling
Taking into Account the Coulomb
Interaction



System Dynamics Model With Coulomb Interaction

In order to take the Coulomb interaction into account the last term
Is introduced:

t+1 _ Ut t t t t t t t t
Xi T =X tZi1+7a E :Caij(Xj —X; )= E :Crij(Xj —Xi )—c § CCjj
JEN! JEN! JEN!

where 7. is the Coulomb interaction gain coefficient and ccijt- is the

element of a connectivity matrix Cct defined by parameter r.:

( . . ] : .
1, if particles i and j are protons and the distance

between them does not exceed certain value r.

CC.. . . .
during time interval t

\O, otherwise

Due to nonlinearity-related complications the Coulomb interaction
magnitude does not depend on distance in given formulation



Simulation Model Parameters

N = 252; — number of particles
Z = 82; — number of protons
T = 80; — simulation time (number of time instants)

r_attr = 1.61; — radius of particle attraction
r rep = 1; — radius of particle repulsion
r_coul = 4; — radius of the Coulomb interaction

gamma_attr = 1e-3; — scale parameter of particle attraction
gamma_rep = 1e-1; — scale parameter of particle repulsion
gamma_coul = 1e-5; — scale parameter of the Coulomb interaction

initial values of particle parameter values are set randomly
Z — particle parameter values fluctuation
simulation: small constant disturbance,

Z € [-0.001, 0.001];



Average Neighbor Number per
Nucleon (A = 10...300)
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Neighbor Number Distribution

Without Coulomb interaction With Coulomb interaction



Semi-Empirical Mass Formula
O

Binding energy per nuclear
particle (nucleon) in MeV
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CONCLUSION



1. The ability to model locally strong and Coulomb interactions of nucleons at the
nuclear scale using a new distributed approach and the development of high-
performance computing allow a better understanding of the details of the evolution of
the cluster structure of heavy nuclei in fission process.

2. A novel mathematical model of nucleon clustering dynamics that explores
networked multi-agent system technique was utilized. Cluster stabilization in this
framework corresponds to minimizing the Laplacian potential of particles
communication graph. In this approach we determine particle interaction according to
the nearest neighbor rule.

3. Developed algorithm is aimed at modelling the occurrence of collective nucleon
aggregation due to short-range mutual interaction taking into account the effect of
coulomb interaction. Numerical simulations were performed for 252Cf nucleus.



GAPE

Thank you for attention!
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