Experimental studies of ¹⁰B(⁷Li,⁶Li)¹¹B and ¹⁰B(⁷Li,⁶He)¹¹C transfer reactions

<u>Yu.G. Sobolev</u>^{1*}, S.S. Stukalov¹, Yu.E. Penionzhkevich¹, N. Burtebayev², A.N. Danilov³, A.S. Demyanova³, S. V. Dmitriev³, J. L. Ferreira⁴, S. A. Goncharov⁵, Yu.B. Gurov¹, J. Lubian⁴, M. Nassurlla², V. I. Starastsin³
 ¹Joint Institute for Nuclear Research, Dubna, Moscow oblast, 141980 Russia
 ² Institute of Nuclear Physics, Almaty, 050032 Republic of Kazakhstan
 ³National Research Centre Kurchatov Institute, Moscow, 123098 Russia
 ⁴Instituto de Fisica Universidade Federal Fluminense Niteri 24210-340 R.J. Brazil
 ⁵LomonosovMoscow State University, Moscow, 119991 Russia

*E-mail: sobolev@jinr.ru

Motivation: The peculiarity of $\sigma_{R}(E)$ in ⁶He,^{6,9}Li+²⁸Si

 $σ_R(E)$ measurements by the 4π-method $σ_R(E)$ ^{4,6,8}He,^{6,7,8,9,11}Li,^{10,11,12}Be+²⁸Si Experiments at fragment-separator ACCULINNA@JINR

 $\sigma_{\rm R}(E)$ of ^{4,6,8}He,^{6,7,8,9,11}Li,^{10,11,12}Be+²⁸Si have been measured at the region $E_{\rm LAB}$ ~5÷30AMeV. The peculiarity of $\sigma_{\rm R}(E)$ in ^{6,8}He,^{6,9}Li,¹²Be+²⁸Si were observed: Local excess of $\sigma_{\rm R}(E)$ "bamp" at E=[10÷20 AMeV] for ^{6,8}He,^{6,9}Li,¹²Be+Si reactions were observed.

The experimental data on the spatial structure of the ground state of ⁶Li_{g.s.} remain insufficient and contradictory:

3

The experimental values of the material radius of ${}^{6}\text{Li}_{g.s.}$ vary significantly, rangingfrom $R_{rms} = 2.09 \pm 0.02$ fm[I. Tanihata *et al.*, Phys.Rev.Lett. 55 2676, (1985)]to $R_{rms} = 2.45 \pm 0.07$ fm[A.V. Dobrovolsky, *et al.*, Nucl.Phys. A 766, pp..1–24, (2006)].

Motivation to study ⁶Li^{*}(3.56MeV) spatial properties

[K. Arai et al., Phys.Rev.C 51(5), (1995)]: R_{rms} (⁶He_{g.s.})= 2.51fm, R_{rms} (⁶Li_{g.s.})= 2.44fm, R_{rms} (⁶Li*(3,56MeV)) = 2.73fm

ISOBARIC TRIPLET ⁶He - ⁶Li - ⁶Be

One of the issues in the study of exotic nuclei is the question of preserving the properties of the halo in excited isobaric analog states (IAS).

The **most accessible** experiments for this are those with beams of stable ⁶Li nuclei included in the isobaric triplet A=6 (⁶He-⁶Li-⁶Be)

Experimental data on the spatial structure of excited ⁶Li IAS are **significantly limited**.

Data analysis based on data from various experiments showed [A. S. Demyanova, *et al.*, ICPPA 2017, KnE Energy (2018)]: R_{rms} (⁶He_{g.s.}) $\approx R_{rms}$ (⁶Li*(3,56)) \approx **2.49±0.16fm**.

One of the newes theoretical studies of the properties of isobaric triplet A=6 are calculations within the **ab initio** NCSM (no-core shell model) [D.M. Rodkin, Yu.M. Tchuvil'sky, "Sizes of the Neutron–Proton Halo in Nucleon-Stable States of the ⁶Li Nucleus", JETP Lett., 118(3), 153 (2023)]. NCSM ab initio calculations showed that the radius of ⁶Li_{g.s.} coincides within the error limits with the radius of the ⁶Li*(3,56) state.

Motivation:

As the spin-parity of the deuteron is 1⁺, the decay of the 0⁺ 6 Li state into the α + d channel is only possible if the continuum final state is J^{π} = 0⁻; thus this process violates parity.

The structure of ⁶Li can be roughly represented as two subsystems: the "core" of ⁴He and the (*p-n*) pair forming a "*p-n*" shell. The excited level ⁶Li*(0⁺,T=1,E=3.56 MeV) is the IAS of ⁶He_{g.s.} and *due to the* **isospin symmetry of the strong interaction**, *the* ⁶Li*(0⁺,T=1,E=3.56 MeV) *state* **should have similar spatial and spin characteristics of the wave function**, *the same as the ground state of the* ⁶He.

If the ground state of ⁶He has a 2*n*-halo of the "Boromian" type, then the state ⁶Li*(3.56) should have a similar *n-p* structure, which has received a number of names in various publications: "**n-p halo**" or "tango-halo" [I. N. Izosimov, Phys. At. Nucl. 80(5), 867, (2017)].

Motivation: for studying ⁶Li_{g.s.} and ⁶Li^{*}(3.56MeV) spatial properties in 1-step reactions:

Most studies focusing on the structure of ${}^{6}\text{Li}*(E=3.56 \text{ MeV})$ have examined multi-step reaction channels like (t,p), charge-exchange reactions like ${}^{1}\text{H}({}^{6}\text{He},{}^{6}\text{Li})n$, etc.

The analysis of multistep reaction channels, unlike one-step processes (nucleonstripping and nucleon-pickup reactions) requires consideration of a greater number of possible combinations, which complicates obtaining definitive results.

experiment: study ${}^{6}He_{g.s.}{}^{6}Li_{g.s.}$ and ${}^{6}Li^{*}$ (3.56MeV) spatial properties in 1-step reactions: Measurement of differential cross sections of reaction products ${}^{10}B{+}^{7}Li$ ($E_{lab}{=}58$ MeV)

The experiment was carried out on the U-400 @ FLNR JINR, Dubna. The aim of the experiment was to measure the differential cross sections $d\sigma/d\Omega$ of :

1) elastic scattering: ¹⁰B(⁷Li, ⁷Li)¹¹B;

- 2) n -transfer reaction: ¹⁰B(⁷Li, ⁶Li)¹¹B, ¹⁰B(⁷Li, ⁶Li*(3,56MeV))¹¹B
- 3) p -transfer reaction: ¹⁰B(⁷Li, ⁶He)¹¹C

and other reaction channels.

Details of the experiment:

study ⁶He_{g.s.}⁶Li_{g.s.} and ⁶Li^{*}(3.56MeV) spatial properties in 1-step reactions:

The measurements were carried out in a scattering chamber using two assemblies of semiconductor detectors. Each assembly includes $4 \Delta E - E$ telescopes.

Left: 4 telescopes ($\Delta E=30\mu m$, $E=800\mu m$) with angular step $\Theta=1^{0}$, angular capture of each detector $\Delta \Theta=\pm 0.5^{0}$. The distance to the target is - 25 cm. The range of measured angles - 17°< Θ <50°. *Right:* 4 telescopes ($\Delta E=100\mu m$, $E=3000\mu m$) with angular step $\Theta=3^{0}$, angular capture of each detector $\Delta \Theta=\pm 1^{0}$. The distance to the target is - 27 cm. The range of measured angles - 7°< Θ <30°.

Experiment:

• The energy resolution of the d*E* and *E* telescope detectors was no worse than $\Delta E_{\text{FWHM}} = 60 \text{ keV}$, which ensured the identification of particles in d*E*–*E* telescopes from hydrogen isotopes to boron isotopes.

Experiment:

• The energy resolution of the d*E* and *E* telescope detectors was no worse than $\Delta E_{\text{FWHM}} = 60 \text{ keV}$, which ensured the identification of particles in d*E*–*E* telescopes from hydrogen isotopes to boron isotopes.

Experiment: study ⁶Li_{g.s.} and ⁶Li^{*}(3.56MeV) spatial properties in 1-step reactions:

Experiment: study ⁶Li_{g.s.} and ⁶Li^{*}(3.56MeV) spatial properties in 1-step reactions: (Preliminary results)

The angular distributions of differential cross sections $d\sigma/d\Omega$:

elastic scattering ${}^{7}Li+{}^{10}B$ \blacksquare - black squares

And one-nucleon transfer reactions ${}^{11}B({}^{7}Li, {}^{6}Li){}^{10}B$:

to ground state ${}^{6}\text{Li}(J^{\pi}=1^{+}; E=0.0 \text{ MeV};T=0)$ \blacktriangle - blue triangles

to excited state ⁶Li ($J^{\pi}=0^+$; E=3.56 MeV; T=1) \bullet - red circles.

Analysis: study ⁶Li_{g.s.} and ⁶Li^{*}(3.56MeV) spatial properties in 1-step reactions:

arXiv:2408.09231v2 [nucl-ex] 9 Oct 2024

The "Finite Range Distorted Wave Born Approximation" (FRDWBA) analysis of the differential cross section of the ¹⁰B(⁷Li,⁶Li)¹¹B for the ⁶Li_{g,s} and ⁶Li*(3.56 MeV) transition was performed.

Phenomenological approach based on solving an approximate equation for the reaction form factor was used to determine its radial dependence and empirical values of asymptotic normalization coefficient (ANC).

Analysis: study ⁶Li_{g.s.} and ⁶Li^{*}(3.56MeV) spatial properties in 1-step reactions:

The "Finite Range Distorted Wave Born Approximation" (FRDWBA) analysis of the differential cross section of the ${}^{10}B({}^{7}Li,{}^{6}Li){}^{11}B$ for the ${}^{6}Li_{g.s.}$ and ${}^{6}Li*(3.56 \text{ MeV})$ transition was performed.

Conclusions: arXiv:2408.09231v2 [nucl-ex] 9 Oct 2024

• ⁷Li elastic scattering and 1n-transfer reaction ${}^{10}B(/Li, {}^{6}Li){}^{11}B$ $E({}^{7}Li)=58MeV$ have been measured at U-400 @FLNR JINR, Dubna.

- The angular distribution for reaction ${}^{10}B({}^{7}Li,{}^{6}Li){}^{11}B$ with excitation state ${}^{6}Li*(J^{\pi}=0^{+},T=1,E=3.56MeV)$ is presented for the first time.
- The "Finite Range Distorted Wave Born Approximation" (FRDWBA) analysis of the differential cross section of the ${}^{10}B({}^{7}Li,{}^{6}Li){}^{11}B$ for the ${}^{6}Li_{g.s.}$ and ${}^{6}Li^{*}(3.56 \text{ MeV})$ transition was performed.
- Phenomenological approach based on solving an approximate equation for the reaction form factor was used to determine its radial dependence and empirical values of asymptotic normalization coefficient (ANC). The obtained values of ANC for the ${}^{6}\text{Li}_{g.s.}$ and ${}^{6}\text{Li}*(3.56 \text{ MeV})$ states are in agreement with the literature ones.
- Comparison of the radial dependences of form factors shows that the wave function of the ${}^{6}Li^{*}(J^{\pi}=0^{+},T=1,E=3.56MeV)$ state has increased spatial dimension compared to the ${}^{6}Li_{g.s.}$.
- This result is an **argument in favor of a halo existence in** ${}^{6}\text{Li}*(3.56 \text{ MeV})$ state, while the question of a halo in ${}^{6}\text{Li}_{g.s.}$ still leaves open.

LXXV Международная конференция «ЯДРО-2025. Физика атомного ядра и

<u>элементарных частиц. Ядерно-физические технологии»</u>

arXiv:2408.09231v2 [nucl-ex]

Study of ⁷Li+¹⁰B elastic scattering and the lithium-induced reaction of one-nucleon transfers ¹⁰B(⁷Li,⁶Li)¹¹B*

Sergey Stukalov,¹ Yuri Sobolev,^{1,2,†} Yuri Penionzhkevich,^{1,3} Nassurlla Burtebayev,^{4,5} Sergey Goncharov,^{6,‡} Yuri Gurov,^{1,3} Andrey Danilov,² Alla Demyanova,² Sergey Dmitriev,² Maulen Nassurlla,^{4,5} Viktar Starastsin,^{2,3} Alexey Shakhov,¹ Semyon Raidun,² and Nguyen Hoai Chau^{1,7}

ISSN 1063-7788, Physics of Atomic Nuclei, 2024, Vol. 87, No. 2, pp. 16 21. C Pleiades Publishing, Ltd., 2024.

NUCLEI Experiment

Study of the ⁶Li 0⁺ Excited State

S. S. Stukalov¹, Yu. G. Sobolev^{1),2}, Yu. E. Penionzhkevich¹, N. Burtebayev³,
S. A. Goncharov⁴, Yu. B. Gurov¹, A. N. Danilov², A. S. Demyanova^{2)*},
S. V. Dmitriev², M. Nassurlla³, V. I. Starastsin², A. V. Shakhov¹, and S. K. Raidun²

ISSN 1062-8738, Bulletin of the Russian Academy of Sciences: Physics, 2025, Vol. 89, No. 8, pp. 1236–1240. © Pleiades Publishing, Ltd., 2025.

Microscopic Analysis of Elastic Scattering and Transfer Reactions in the ⁷Li + ¹⁰B Collision at a Beam Energy of 58 MeV

E. V. Zemlyanaya^{*a*, *b*, *, K. V. Luk'yanov^{*a*, *b*}, V. K. Luk'yanov^{*a*}, Yu. E. Penionzhkevich^{*a*, *c*}, Yu. G. Sobolev^{*a*}, and S. S. Stukalov^{*a*}}

<u>LXXV Международная конференция «ЯДРО-2025. Физика атомного ядра и</u> элементарных частиц. Ядерно-физические технологии»

Thank you