Contribution ID: 39

Type: Oral

Self-consistent microscopic description of nobelium isotopes

Wednesday 2 July 2025 09:30 (30 minutes)

Nobelium isotopes serve as a test gateway for theoretical models pretending to description of superheavy elements [1]. We give a general review of the present status of spectroscopy of nobelium isotopes and present a systematic investigation of their ground-state properties and low-energy spectra of $^{250-262}$ No [2] in the framework of self-consistent Quasiparticle Random-Phase-Approximation (QRPA) with Skyrme forces [3]. The model was previously widely applied to exploration of low-energy spectra and fine structure of giant resonances in light, medium and heavy nuclei, see e.g. [4-6]. The monopole, quadrupole, octupole and hexadecapole excitations as well as some K-isomers of a high multipolarity in No isotopes are considered. The main attention is paid to nuclei 252 No and 254 No, for which the most extensive experimental spectroscopic information is available. In particular, we analyze a possible shell gap in neutron single-particle spectrum and corresponding drop of the neutron pairing in these isotopes. The features and assignment of K-isomers are discussed in detail, taking into account the latest experimental data [7-9]. The disputed 8⁻ isomer in 252 No is firmly assigned. Low-energy pairing-vibrational $K^{\pi} = 0^+$ states in 252,254 No are predicted.

[1] R.-D. Herzberg and P.T. Greenlees, Prog. Part. Nucl. Phys. 61, 674 (2008).

[2] V.O. Nesterenko, M.A. Mardyban, A. Repko, R.V. Jolos, P.-G.Reinhard, arXiv:2502.09096[nucl-th], to be published in Phys. Rev. C.

[3] A. Repko, J. Kvasil, V.O. Nesterenko, P.-G. Reinhard, Eur. Phys. J. A 53, 221 (2017).

[4] G. Colo, D. Gambacurta, W. Kleinig, J. Kvasil, V.O. Nesterenko, A. Pastore, Phys. Lett. B 811, 135940 (2020).

[5] A. Bahini, V.O. Nesterenko, et al, Phys. Rev. C 105, 024311 (2022).

[6] V.O. Nesterenko, P.I. Vishnevskiy, P.-G. Reinhard, A. Repko, J.Kvasil, Eur. Phys. J. A 60, 28 (2024).

[7] M.S. Tezekbayeva et al, Eur. Phys. J. A 58, 52 (2022).

[8] M. Forge et al, J. Phys.: Conf. Series, 2586, 012083 (2023).

[9] S.G. Wahid et al, Phys. Rev. C 111, 034320 (2025).

Primary author: NESTERENKO, Valentin (Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research)

Co-authors: Dr REPKO, Anton (Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia); Ms MARDYBAN, Maria (Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research); Prof. REINHARD, Peter (Institute for Theoretical Physics II, University of Erlangen, Germany); Prof. JOLOS, Rostislav (Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research)

Presenter: NESTERENKO, Valentin (Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research)

Session Classification: 0. Plenary

Track Classification: Section 1. Experimental and theoretical studies of nuclei.