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The Wigner Function Moments (WFM) method

is an effective tool for studying collective dynamics in atomic nuclei (and any other
many body systems). The solution of Time Dependent Hartree-Fock-Bogoliubov
(TDHFB) equations by this method allowed us to find the energies and excitation
probabilities of giant resonances (isoscalar and isovector quadrupole ones, isoscalar
(compressional) and isovector dipole ones [1]) and various low lying modes. The
especial interest among the latter represent "nuclear scissors”, the theory of which was
created with the help of WFM method. The creation of the theory led to the
discovery of two new types of scissors modes, which exist only due to spin degrees of
freedom (spin scissors) [2].
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The irreducible tensors of various ranks are used as the collective
variables of the WFM method. Analysing the second rank tensors we
have discovered the existence of the so called "hidden angular momenta”
of an atomic nucleus. Due to this peculiarity of atomic nuclei one can
classify them as the antiferromagnets. The antiferromagnetism of atomic
nuclei becomes apparent in the phenomenon of energy levels splitting at
the zero deformation (Zeeman effect) [3].

[3] E. B. Balbutsev, and I.V. Molodtsova, Int. J. Phys. E 33 Ne12,
2441031 (2024).
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The principal feature of the WFM method, which distinguish it from the
random phase approximation, is that it works with the dynamical (time
dependent) mean field. Due to it there is no necessity to introduce a
residual interaction. More of it, one has not any problems with
"spurious” states — they don't appear!
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It is necessary to emphasize that we don’t seek for the exact (or
approximate) solution of TDHFB equations. As a matter of fact, we
extract the exact information about the dynamics of average values of
various operators. The only (and non-avoidable) approximation is the
neglect by the coupling with the dynamics of higher rank tensors
(moments). The undoubted merit of WFM method is the possibility to
study the large amplitude motion, not only the small amplitudes. For
example, we have studied multiphonon giant quadrupole and monopole
resonances [4].

[4] E. B. Balbutsev, and P. Schuck, Yad.Fiz. 60 Ne5, 855 (1997).
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= Time Dependent Hartree-Fock-Bogoliubov equation

IR = [H,R], (1)

with 'R:(_ﬁe%]L 1:§*)’ H:(Af —Aﬁ*)

—> Microscoic Hamiltonian:

a2
o P2 ~a
h:; ﬁ—i—imw%,—nii + Hgq + Hss,

2 zZ N K z N
Hog = > (—1)* {RZZ +3 |: S+ } }Ch—u(fi)qzu(fj%
. T
zZ N X z N R .
He= > (-1)* {izz+2 [ S+ > ] }S—}L(i)su(j)v
. T

where go,,(r) = \/167/5 r* Y2, (6, ¢).

=> Fourier (Wigner) transformation

7' (r,p, t) = /dse—"*’s/ﬁ<r+ %,Tcrlﬁh'— ;,m/>, oo’ = 1, 4 1 U,
. . . 1 1 . .
with the conventional notation 1 for o = 5 and | for o = 5 T - isospin.
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= Integrating the equations over the phase space with weights:

1, {r ® r})\;m {P ® p}%;u {r & p}k;u where {a ® b}/\u = Z Cf\ylflyaﬁbllv
14

we obtain a system of nonlinear dynamic equations for the following second order
moments = collective variables:

RE () = 2n) ™ [dr [dp{re b, (np,0),
PIT () = (2at) ™ [dr [dp{p® phaf ™ (rp.1),
1557 (0) = 2nm) =2 [ e [dp{r @ pha 7™ (1),
FTU"/(t) = (2rh)~3 /dr/dp f”""/(r, p, t), where T is an isotopic index.

—> lIsoscalar and isovector variables:
Xau(t) = X3, (1) + X;\’“(t), Xou(t) = X3, (t) — Xfu(t).

—> Spin-scalar and spin-vector variables:

X5, =X+ X, X560 =x]T6) - Xt (), X={R,P,LF}.
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Physical meaning of the collective variables:

+ _ + _ :
R2M quadrupole moment of the nucleus and Ry, — mean square radius,

P,
LIFM — orbital angular momentum,

L;—u ~ R;H represents the velocity of changing of the nuclear shape,
L(J)ro ~ R&n represents the velocity of changing of the nuclear size,
FT = A — number of particles.

and P(;B — quadrupole moment and mean square radius in a momentum space.

To describe the K™ = 11 states we need a part of dynamical equations with u = 1.
; i ation: < — x¢ <
= Small amplitude approximation: Xy (t) = X)\sq + &3, (1),
XL, (8) = {RE(e), £E(2), PE(8), FE(0)}, €=+, = 1 It

Imposing the time evolution via €™ for all variables allows to transform the system of
nonlinear dynamical equations into a set of linear algebraic equations.

Eigenfrequencies 2 are found as solutions of its secular equation.
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21
Simple example: H = Z <— + = mw? r + Hqq,

i=1

Coupled dynamical nonlinear equations for protons (7 =p) and neutrons (7 =n):

d_, 2.
SR~ =13, =0, =02
d 1 - 25T 2 - 11 T T
= =Pl mw RM—lzx/E_XO:\/szrl{u{}{zZ ®R }an =0, A=0,1,2
=

d . . 2 = A sor o
EPAH%»meZL/\“724\/52\/2]4*1{;)1\{}{22 ® L Fau =0, A=0,2
j=0

where {;i{} is the Wigner 6j-symbol, {Z; ® X"}, = Z . Z;, X, with

20,jv

Zzu = HR + KRZH s ZZ“ = HRZH + NRI'“.

(. J

E. Balbutsev and P. Schuck, NPA 720 (2003) 293.

Regl = —Quo/V3, R5' = Qx/V6,
Qoo = 2AR?, Qo = 36Quo, & — deformation parameter, Qg = (N7/A)Quo.
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Coupled dynamical nonlinear equations for protons (7 =p) and neutrons (7 =n):

d_, 2.
SR~ =13, =0, =02
d 1 - 25T 2 - 11 T T
= =Pl mw RM—lzx/E_XO:\/szrl{u{}{zZ ®R }an =0, A=0,1,2
=

d . . 2 = A sor o
EPAH%»meZL/\“724\/52\/2]4*1{;)1\{}{22 ® L Fau =0, A=0,2
j=0

where {;i{} is the Wigner 6j-symbol, {Z; ® X"}, = Z . Z;, X, with

20,jv

Zzu = HR + KRZH s ZZ“ = HRZH + NRI'“.

(. J

E. Balbutsev and P. Schuck, NPA 720 (2003) 293.

Regl = —Quo/V3, R5' = Qx/V6,
Qoo = 2AR?, Qo = 36Quo, & — deformation parameter, Qg = (N7/A)Quo.

For TDHFB (with spin) we obtain a system of 44 coupled isovector and isoscalar dynamical
equations.
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Eigenvalues

164Dy

Decoupled equations = Coupled equations
E; B(M1); | B(E2); E; B(M1); | B(E2);
MeV) | () | (W) MeV) | () | (W)
1.29 0.01 53.25 1.47 0.05 25.68
2.62 0.09 2.91 2.20 1.76 3.30
0.34 2.87 2.24 0.34
1.62 3.59 1.56 4.37
10.94 0.00 55.12 10.92 0.04 50.37
14.04 0.00 2.78 13.10 0.00 2.85
0.06 0.48 15.42 0.07 0.57
15.88 0.00 0.55 15.55 0.00 1.12
0.07 0.36 16.78 0.06 0.53
17.69 0.00 0.45 17.69 0.01 0.68
17.90 0.00 0.51 17.91 0.00 0.53
0.18 1.85 18.22 0.13 0.89
0.10 0.97 19.32 0.08 0.61
2.47 21.26 2.03 21.60
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3 magnetic states correspond to 3 physically possible Scissors modes:

@ (a) spin-scalar isovector (conventional, orbital scissors)
@ (b) spin-vector isoscalar (spin scissors)

@ (c) spin-vector isovector (spin scissors)

Figure: Schematic representation of three interconnected scissors modes.
Arrows show the direction of spin projections; p — protons, n — neutrons.
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Figure: WFM1 — the sum of two highest scissors, WFM2 — the sum of three
scissors.
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Electric 17 state below nuclear scissors

The nature of the lowest state can be understood after solving dynamical equations
with © = 2 and p = 0, and studying the deformation dependence.

T T T T T
20 T— /,-:,':’:
— =1 Ljg=0 -7~
18f - m=0 e ]
s m- =2 P
] 7 P
§1,5_ e I J
w Pt -
14 === = i
1,2 1 1

0 0,05 0,1 0,15 0,2 0,25

Figure: Energies E of the lowest electrical u = 0,1,2 levels as a function of
deformation . The calculations were performed without L; (eq).
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Electric 11 state below nuclear scissors

The phenomenon “hidden angular momenta” [BMS, PRC 91, 064312 (2015)].
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Figure: Energy branches (u = 0,1,2) vs. de-
formation.
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S
LlO - LIO - LlU

LIOT and LfoL are the average values of the z-
component of the orbital angular momentum of
all nucleons with the spin projections 1 and |.

In the equilibrium state: Lﬁf(eq) = —LIOT(eq)
V2 3 n’h? 4
Lig =ih— 1—- =6
10(9‘1) 1 6 nm 8 w2 + 3 Qoo

Ll’o(eq) = LIOT (eq) + Llloj'(eq) =0

The ground-state nucleus consists of two equal
parts having nonzero angular momenta with op-
posite directions, which compensate each other
resulting in the zero total angular momentum
whereas L, (eq) # O even in the spherical limit.

—  Antiferromagnetism
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The action of an uniform magnetic field 7 can be

The influence of an external magnetic field  described by adding to the Hamiltonian the term
M=—p-H,
' ' ' j ~ e TIT TAaT
20 — 4ot H=0 e where p=—— 3 (67T +&787)
-—- u=0 L0 =7 T=p,n
N -- u=2 ,‘;'/’/ — operator of the magnetic moment of the nucleus.
o e A
= Pt In the case H = H, = H:
1,5 [
u MT eH ( 7'/’\ + T A)
=—— , $).
2me & &
- @ The Wigner transformation of M7 :
10 \ \ \ \ \ .
’ T T T T T . L o1
20l — uen U H = -0.1 MeV /?/‘»{ My, = pvH (g, %\/E{f ® p}io — &, 500> .
R tfg Lpea=0 = Table: Splitting for § = O:
> - : —_ .
é I H =0, Lj(eq)=22ih;
w " Il: pyH = —0.13 MeV,
Lig(eq) =0: H: py’H = —0.10 MeV,
IV: uyH = —0.05 MeV.
1,0 1 1 1 1 1
0 005 01 015 02 0725 2 E, MeV
H [ 1] 1] \%
Figure (b): for zero deformation, 142 | 142 142 142
the energy of splitting (Zeeman energy) is 1 1.35 1.28 1.32 1.37
AE ~ pHyun MeV. 2 114 | 115 121 131
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Currents

ey = [ (2:;)3 poFT(r,p, 1), (2)

Sty = n(n) [ K750+ S KT (05 + S0 (D) KT (Ol @ e + ]
j X!

where ¢ — spin index, n(r) — nuclear density.
The coefficients K7° ;(t) are connected by linear relations with the collective variables £77 (t):

z;;(t):/dr/(z‘;izp{@p}maf”(r,p,t):/dr{r®j“‘(r, ) an.

We find in Cartesian coordinates: jXTJr =0,

iyt = dean(n(£y - £3)z,

i7" = ioan(n)(Ly" + L3 )y
This result is quite remarkable. The equation 6J; = 0 says that all motions take place
only in two dimensions (J7* = 0), i.e. in one plane, as it should be for real scissors.

v Displacement field is a superposition of rotational and irrotational flows.
v Displacement pattern will be determined by the competition between these two contributions.



Scissors currents

154 protons 1.5 neutrons
e Pty
14 P IENNN 1 2PN\
V/ B PN N W v < =~ NN
] S N 3| /v - N
0.5 VAP N 0.5 VPR
P vy 1o vy
z 0 oo e z 0 bt
NN -y Vv -t
NN s e / Vy s -oe 2 f
-0.51 [N -0.5 NN -
NN i 7 N\ NS -
14 NS = e -1 N~
= @ N ()
-1.5- T T T - 1.5 T T T
-1 0 1 -1 0 1
y y

Figure: The proton and neutron currents in 184Dy for scissors state with energy E = 3.59 MeV
(conventional scissors).
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Electric 17 state below nuclear scissors: Currents

1.5 protons 1.5 neutrons
14 [N 11 [N
0.5 N ] 0.5 N
z 0 f ' z 01 . '
-0.51 J RN -0.51 y RN
-1 - ~ 14 PSRN
> < (a) = < (b)
-15— : ‘ -15— : ‘
-1 0 1 -1 0 1
y y

Figure: The proton and neutron currents in Dy for the lowest electrical level with energy
E = 1.29 MeV. The calculations were performed without the coupling of isovector and isoscalar
equations
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Electric 1T

Figure: The currents in 154Dy for the lowest (electrical) level with energy E = 1.47 MeV.

state below nuclear scissors: Currents

protons

15 neutrons
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(c)
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S e R

/AP
IR
NN

AN /74
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< ©

The isoscalar-isovector coupling is taken into account.
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Electric 1T state below nuclear scissors: Currents

15 protons 15 neutrons

Figure: The currents in spherical nucleus with N and Z corresponding to 184Dy for the lowest
(electrical) level.
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N and Z corresponding to 164Dy
for:

Nucleons currents in the nucleus with
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Electric 11 state below nuclear scissors: Currents

The total angular momentum (3) = (I) + (8) can be written in terms of dynamical variables:

" h ~ h__ ~ . h
(hy = —ivaLf, — EF”, (o) = ~iVaLiy + 3 F7, (Joa) = —iVaL{  + —F™

V2
%00 - a3 [eiio+ b0 <o —
at T ar |1 2 - 1= -
(N-2)

%jl(t) = —ﬁ% [ia‘;(r) + gﬁ”(r)] = —i3vV25mu’ [ﬁ;(t) Y R;(t)] .

_ _ h - 2 NZ
J=-V2 [wlﬁ + EIF”] = —6\/§5m%7

Ry Ry
N z
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Electric 11 state below nuclear scissors: Currents

The total angular momentum (3) = (I) + (8) can be written in terms of dynamical variables:

() = —ivaLf, — %FH’ (Jo) = —ivaLiy + = F* (1) = —iVaLE, + LT

V2
LA = —Vag [iLh0+ 37 0] =0 —
%jl(t) = —ﬁ% [ia‘;(r) + gﬁ”(r)] = —i3V26mw? [ﬁ;(t) - %R;(t)} .

2 n+ p+
_ w-NZ | R R
Ji= V2|l + F” = 6V25m— —= a _ Mo
Q A N V4
1.5 protons 1.5 neutrons
1 1 S-
N
0.5 0.5 NI
L .t
Z 9 Z P
PN}
-0.5 -0.5 NN
PSRN
1 o .
(b)
-15 -1.5
-1 0 1 -1 0 1
y y

Figure: The proton and neutron currents in 184Dy for the E = 1.47 MeV.
The calculations without taking into account the contribution of £],, £ (X = 1) variables.
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The basis of our method is the TDHFB equation in matrix formulation

inR = [H,R] (3)

p S h A
AR AT S :
_at 1 - p* AT — px (4)
The normal density matrix 5 and Hamiltonian h are hermitian whereas the abnormal
density & and the pairing gap A are skew symmetric: af = —

with

* At = —Ax,
The detailed form of the TDHFB equations is
inp = hp— ph— Az + &A1,
—inp* = h*p* — p*h* — Ata 4+ 2TA,
—ihd = —h& — &h* + A — Ap* — pA,
—ingt = h*at + &Th— AT + Atp+ p*AT. (5)
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Let us consider matrix form of (5) in coordinate space keeping spin indices s, s’ with
compact notation errs,/ = (r,s|X|r',s’). Then the set of TDHFB equations with

specified spin indices reads:

inpll, = / a3 (o, — T, B kT, — pTendT, — ATV, =t AT ),

el ! ! Pttt el !

iply, = / B/ (h el — pTThTE, + By pbt, — Tttt ),
in piT — [P, - pi,rThT,Tr” LR Lt

' rr! P,/,u 1, rr! P,/,u P,r/ ,/,//)a

+ A Hpdl

b ™ ™
’hpll :/d3r,(hrirtpj’iﬂl _PHhT et Prrprr = P N _A;LrT&Tr/r// +a§£;AT’/'“)’

rr!! ! ittt

’hET‘L = 7AT%/ + /d3rl <thaI/J;// + an h*i/ir// + Aj,%ﬁ*fin + PIJAT/’L,//) )

rr!’ rr r
P A 3
natl, A, [ @0 (il 4 alH T T e al) . @

This set of equations must be complemented by the complex conjugated equations.
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Pair potentialn

The Wigner transform of the pair potential (pairing gap) A(r,p) is related to the
Wigner transform of the anomalous density by

86w =~ [ 2P o o Dt ) ™
) = - v - *(r, )

P P ERa P
where v(p) is a Fourier transform of the two-body interaction. We take for the pairing
interaction a simple Gaussian, v(p) = Be=aP with B = —|Vo|(rp/7)? and

a= r§/4hz. The following values of parameters were used in calculations:

rp = 1.9 fm, |Vg| = 25 MeV. Several exceptions were done for rare earth nuclei:

|Vo| = 26 MeV for 1%ONd, |Vo| = 26.5 MeV for 176:178,180Hf and 182,184y,

[Vo| = 27 MeV for nuclei with deformation § < 0.18.
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Excitation probabilities

Excitation probabilities are calculated with the help of the theory of linear response of
the system to a weak external field

O(t) = 0e 0 4 OF &/, (8)
The matrix elements of the operator o obey the relationship

|| Olyo)[* = i _lim (2 — Qa)(y’|Oly)e=i, ©)

where 1y and 1, are the stationary wave functions of the unperturbed ground and
excited states; 1)/ is the wave function of the perturbed ground state,

Q, = (Ea — Ep)/h are the normal frequencies, the bar means averaging over a time
interval much larger than 1/Q.

To calculate the magnetic transition probability, it is necessary to excite the system by
the following external field:

2
A+1

X V) VPV = e (10)

Oxp = i <g5§/h — g

Here g,p =1, g¥ = 5.5856 for protons and g/ =0, g' = —3.8263 for neutrons.
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The dipole operator (A =1, p = 1) in cyclic coordinates looks like

~ 3 A
On =N\ gssl/ﬁ*g/ﬁz oV | - (11)
v,o
Its Wigner transform is
A _ 3 & . \[ 11 UN
(Om)w =1/ — |&S —igV2)_ Clli,nps = (12)

4r
v,o

For the matrix element we have

A 3 A, 4o . @
W' 10uly )=\ — | == (gnF™T 4 gPFPYT) —igPrhf | =
27 2 h

301, . _ . _
= —[75[(&fgsp)f”+(gs+gs)f“1 reF (el — £ on

8T
3 1 U p + i n p Py p,+
=\Vanr E(gs g F T+ g Ly ﬁ[gs +gf — gL | mis  (13)

FH(t) = /d(p, NSET (v, p, t).

Wigner Function Moments Method
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Deriving (13) we have used the relation 2iLf; = —hF*T, which follows from the

angular momentum conservation.
One has to add the external field (11) to the Hamiltonian. Due to the external field

some dynamical equations of become inhomogeneous:

5 3 pn iQ
Roy= o+ iz g 8 Riplea) e,
= _ . 3
Ly=...+i 41‘ Lm(eq)e
.3 uN i
ﬁ%&z.wq/gﬁ(gs—gs)Lw(eq) g (14)

Solving the inhomogeneous set of equations one can find the required in (13) values of
£, . £3; and F41 and using (9) calculate B(M1) factors for all excitations.
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To calculate the electric transition probability, it is necessary to excite the system by
the external field operator

62;1, = er2y2p, = ﬁ{l’ ® r}2u: (15)

15 - .
where 8 = e/ g>. The matrix element is given by

W10nlv') = AR = 2 (R, R4, (16)
For 1t =1 the external field makes inhomogeneous only some proton equations:

= - Zo(%orap)em,

B = S oke™,

P = ... —V2BLY (eq)e™. (17)

Solving the inhomogeneous set of the coupled isovector and isoscalar equations one
can find the values of R}; and RJ; and calculate B(E21) factors.
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Wigner transformation

Wigner transformation

' i s s
77 (r,p) = /d3se”"s/h <r + =, olplr — 7,0’> .
2 2
The Wigner transformation of a product of two operators is given by the following
formula

(hp)w

h(r,p) exp (%l 7\’) f(r,p)

ih 2
BRI P + 5 b FY = (T P+ 00R), (18)

S = = — — >
where A=V .V, — VpVr, {h,f} =h A fis the Poisson bracket of functions
h(r,p) and f(r,p), {{h,f}} = h(r, p)(</_\>)2f(r, p) is their double Poisson bracket.
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