Contribution ID: 155 Type: Oral

Investigation of the 2.26-MeV excited state of ⁸Li

Friday 4 July 2025 12:40 (20 minutes)

Study of exotic nuclei is one of the main directions of modern nuclear physics. The most famous representative of exotic nuclei is halo.

The nucleus ⁸Li is a compelling candidate for studying halo formation. Various theoretical approaches have been applied to study its structure. Despite this, significant ambiguities remain due to limited experimental constraints. Some methods reproduce the radius or quadrupole moment of ⁸Li accurately but fail to describe both ⁸Li and its mirror nucleus –⁸B simultaneously. Several research groups have attempted to determine the structure of ⁸Li directly by deducing its matter radius or density distribution through cross section measurements. One study indicated that there is no halo in ⁸Li [1], while another found that ⁸Li exhibits a skin-like structure [2], contrasting with its mirror nucleus ⁸B. Consequently, the structure of the ⁸Li nucleus remains unclear, particularly for its excited states. The most promising candidate for a possible exotic structure is the 2.26-MeV excited state of ⁸Li which is located 200 keV above neutron emission threshold.

To analyze the possibility of exotic structure in the 2.26-MeV excited state of ⁸Li we used independently two different methods –MDM (Modified diffraction model) and DWBA. We applied MDM to existing literature data on d+⁸Li and ⁸Li+¹²C scattering and obtained radii of low-lying excited states of ⁸Li. Radii of the excited states are practically similar as for the g.s. except radius of the 2.26-MeV state which is significantly increased. Independently, DWBA was applied to new experimental data ⁷Li(d,p)⁸Li [3]. The 2.26 MeV state is considered as a single-particle quasi-stationary state. It was shown that the wave function of the 2.26 MeV state is very similar to a system with a neutron halo. Both results of the MDM and DWBA analysis are arguments in favor of neutron halo in the 2.26 MeV state of the ⁸Li nucleus.

- 1. G.W. Fan et al., Phys. Rev. C 90, 044321 (2014)
- 2. A. Dobrovolsky et al., Nucl. Phys. A 766, 1-24 (2006)
- 3. N. Burtebayev et al., to be published

Primary authors: DEMYANOVA, Alla (NRC "Kurchatov Institute"); DANILOV, Andrey (NRC "Kurchatov Institute"); NASSURLLA, Maulen (Institute of nuclear Physics, Almaty city, Kazakhstan); BURTEBAYEV, Nasurlla (Institute of nuclear Physics, Almaty city, Kazakhstan); GONCHAROV, Sergei (Lomonosov Moscow State University); DMITRIEV, Sergey (NRC "Kurchatov Institute"); STARASTSIN, Viktar (NRC "Kurchatov Institute")

Presenter: DANILOV, Andrey (NRC "Kurchatov Institute")

Session Classification: 1. Experimental and theoretical studies of nuclei

Track Classification: Section 1. Experimental and theoretical studies of nuclei.