

LXXV Международная конференция «ЯДРО-2025. Физика атомного ядра и элементарных частиц. Ядерно-физические технологии»

Измерение электромагнитных времениподобных формфакторов нейтрона и протона на е+е- коллайдере ВЭПП-2000 с детектором СНД

К.И. Белобородов, С.И.Середняков

Институт ядерной физики им.Г.И. Будкера

Новосибирский государственный университет

N = n, p: $I(J^p) = 1/2 (1/2^+)$

$$N\overline{N}$$
: $J^{PC} = 1^{--} \implies S, D$

A spin- $\frac{1}{2}$ particle \implies two EM FFs $G_E(q^2)$ and $G_M(q^2)$

$$\sigma(e^+e^- \to n\bar{n}) = \frac{4\pi\alpha^2\beta C}{3s} \left(|G_M|^2 + \frac{2m_n^2}{s} |G_E|^2 \right)$$

 $e^+e^- \rightarrow N\overline{N}$:

- A study the reactions near threshold and up to 2 GeV
- A measurement of the cross sections
- A measurement of the EM FFs

VEPP-2000 e⁺-e⁻ collider (2 x 1000 MeV)

3

Spherical Neutral Detector

1 – beam pipe, 2 – tracking system, 3 – aerogel Cherenkov counter, 4 – Nal(Tl) crystals, 5 – phototriodes, 6 – iron muon absorber, 7–9 – muon detector, 10 – focusing solenoids.

Calorimeter

Thickness	13.5 <i>X</i> ₀						
Acceptance	$0.95 imes 4\pi$						
Energy resolution	$\frac{\sigma_E}{E} = \frac{0.042}{\sqrt[4]{E[GeV]}}$						
Angular resolution	$\sigma_{\phi,\theta} = \frac{0.82^{\circ}}{\sqrt[4]{E[GeV]}} \oplus 0.63^{\circ}$						
Tracking system							
Acceptance (9 layers)	$0.94 imes 4\pi$						
Angular resolution	$\sigma_{oldsymbol{\phi}}=0.55^\circ$, $\sigma_{oldsymbol{ heta}}=1.2^\circ$						
Vertex resolution	$\sigma_R = 0.12 cm, \sigma_Z = 0.45 cm$						
Aerogel counters							
K/π separation	E < 1 GeV						

Publication: Ядерная физика, 2024, т.87, N5, с.400-413 Grant RHF: No. 23-22-00011

6

Typical view of $n\overline{n}$ event

$n\overline{n}$ events selection

Event selection

time spectra

Background:

- 1 cosmic bkg flat,
- 2 -- beam bkg peak at t=0;
- 3 physical bkg $\,$ e+e-> ng(QED), $\pi 0,\,\eta$, .

Time spectra fit

$$N(\tau) = N_{csm} \cdot S(\tau)_{csm} + N_{bg} \cdot S(\tau)_{bg} + N_{n\bar{n}} \cdot S(\tau)_{n\bar{n}}$$

Measured e⁺e⁻ -> n anti-n cross section

Вычисление сечения $\sigma_{\rm R} = N_{\rm nn} / \epsilon (1+\delta) L$ Example : N_{nn} – detected events number, ~300, L - integrated luminosity, ~ 5 pb⁻¹, ϵ - MC detection efficiency, ~ 0.2, $1+\delta$ - radiative correction, ~ 0.8, $\sigma_{\rm B}$ - total cross section ~ 0.4-0.6 nb, σ_{vis} - visible cross section, err(stat) ~5%, err(syst) ~ 10%, both errs are shown. 0.9 0.8 0.7 ∽ 0.5 0.4 0.3 **0.2**⊟ **0.1**

12

14 T(MeV)

2

Calculation of GE/GM using angular distribution

Measured GE/GM

GE/GM VS energy

GE/GM VS momentum

Aver. |GE/GM|=1.028+-0.114 (stat)

Theoretical predictions - σ_{nn} , GE/GM

NN production in e+e- annihilation near the threshold A. I. Milstein and S. G. Salnikov Phys.Rev. D, 106, 074012 (2022)

14

 $e^+e^- \rightarrow p\bar{p}$

Two strategies for the $e^+e^- \rightarrow p\bar{p}$ events selection:

- 1. By the annihilation of an antiproton on the DC: $M_p < E_b < 960$ M₃B
- 2. By a pair of collinear charged tracks with high energy deposition in DC: $960 < E_b < 1000$ M₃B

In this analysis, the second type of events will be analyzed

1.	Trigger:	trin > 0	
2.	Number of charge particles:		nc ≥ 2
3.	Collinearity:		$ \Delta \varphi < 10^o$
			$ \Delta \theta < 20^o$
7.	Пучковость:		$ z_{0,i} < 15 \ cm$
			$ \Delta z_0 < 10 \ cm$
			$ d_{0,i} < 2 \ cm$
8.	High energy deposition in the D	C:	$dExn_i > dEdx_{cut}$

$p\bar{p}$ events selection dy dEdx

Backgrounds

1. Collinear processes:

1.
$$e^+e^- \rightarrow e^+e^-$$

2. $e^+e^- \rightarrow \mu^+\mu^-$
3. $e^+e^- \rightarrow \pi^+\pi^-$
4. $e^+e^- \rightarrow K^+K^-$
5. Cosmics
Multi-hadron processes:
1. $e^+e^- \rightarrow \pi^+\pi^-\pi^0$
2. $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$
3. $e^+e^- \rightarrow KK\pi$
4. etc
Other processes:
1. Two-photon

2. etc

2.

3.

Number of events

Fit model:

- 1. Simultaneous fitting of events in regions:
 - 1. Main cuts
 - 2. Sideband
- 2. Processes:

1.
$$e^+e^- \rightarrow p\bar{p}$$

$$2. \quad e^+e^- \to e^+e^-$$

- 3. Low energy bkg
- 4. Multi-hadron bkg

Scan by $dEdx_{cut}$

- Components have different behavior depending on the parameter value *dEdx_{cut}*
- 2. Behavior is consistent with expectations
- 3. The proton part is clearly visible
- 4. Cut selection: $dEdx_{cut}$
- The simulation after scale correction is in good agreement with the experiment:

 $\sigma/R = 0.244 \pm 0.005$ (exp) $\sigma/R = 0.230 \pm 0.001$ (sim)

Data

	scan	Beam, Mev	IL-1, pb	$N_{p\overline{p}}$	N _{mh}	$\xi_{e^+e^-}$	n_{σ}	ε
1	MHAD2017	1000.0	3.385	2070 ± 63	208 ± 32	$1.7 \cdot 10^{-4}$	1.56	0.986
2	MHAD2019	975.0	5.422	2558 ± 79	334 ± 47	$2.0 \cdot 10^{-5}$	2.06	0.998
3	MHAD2019	987.5	2.267	1260 ± 44	119 ± 22	$3.7 \cdot 10^{-5}$	2.48	0.9998
4	MHAD2021	970.0	5.981	2746 ± 150	416 ± 134	$2.8 \cdot 10^{-5}$	1.86	0.996
5	MHAD2021	980.0	8.293	4318 ± 130	676 <u>+</u> 97	$1.9 \cdot 10^{-4}$	2.21	0.999
6	MHAD2021	990.0	9.717	5235 ± 122	948 <u>+</u> 86	$7.2 \cdot 10^{-4}$	1.90	0.996
7	MHAD2021	1000.0	22.871	12864 ± 221	1887 ± 161	$2.4 \cdot 10^{-4}$	1.66	0.990

 $N_{p\overline{p}} \longrightarrow p\overline{p}$ events

 N_{mh} --- number of multi-hadron background events estimated by sideband $\xi_{e^+e^-}$ --- the part of the $e^+e^- \rightarrow e^+e^-$ events

20

Cross section of $e^+e^- \rightarrow p\bar{p}$

Estimation of systematic error: <10 %

Measurement $|G_E/G_M|$ of proton

$$\frac{d\sigma_{p\bar{p}}(s)}{d\cos\theta} = \frac{\alpha^2\beta C}{2s} \left(|G_M|^2 \left(1 + \cos^2\theta\right) + \frac{4m_n^2}{s} |G_E|^2 \sin^2\theta \right)$$

Conclusions

- 1. Experiments are carried out at the VEPP-2000 e+e collider to measure time like nucleon form factors at energies from the threshold to 2 GeV
- At present, data have been accumulated with an integrated luminosity of about 180 pb⁻¹, about 10⁴ n+anti-n events have been registered, and 4 articles have been published.
- 3. The presented report presents the latest data on the study of the e+e->n+anti-n process at energies from the threshold to E=1910 MeV
- 4. The measured cross-section changes with energy within 0.4-0.6 nb. At the point closest to the threshold, the cross-section is about 0.4 nb.
- 5. The effective time-like form factor of the neutron decreases with energy. Its value at the threshold is about 0.5, at an energy of 2000 MeV 0.15.
- 6. Preliminary results are presented on the ratio |GE/GM| of the electric and magnetic timelike form factors of the neutron and proton.
- 7. The measured preliminary cross-section of the e+e->p+anti-p process

The work is supported by RNF grant : No. 23-22-00011 (PHΦ)

. . .