

Prospects for Dilepton Measurements in the MPD Experiment at NICA

Sudhir Pandurang Rode for the MPD Collaboration July 3, 2025

Joint Institue for Nuclear Research

Heavy-ion collisions

- ▶ Smooth crossover at $\mu_B \approx 0 \leftarrow$ Early universe like conditions.
- lacktriangle Explore high μ_B matter o Critical end point and 1st order phase transition.
- Similar net baryon density expected as in the core of neutron stars.
- \blacktriangleright MPD and BM@N \rightarrow QCD matter study at these densities.
- ► Various experiments, such as NA61/Shine, STAR-BES and CBM in similar beam energy range.

Multi-Purpose Detector (MPD) experiment at NICA

- Nuclotron-based Ion Collider fAcility (NICA) is the first megascience project in Russia → approaching its full commissioning.
- ▶ MPD is a flagship experiment at NICA: starting operations in 2026.
- Modes of operation:
 - ▶ Collider mode: two beams, $\sqrt{s_{\rm NN}}$ = 4-11 GeV \rightarrow Xe+Xe/Bi+Bi at $\sqrt{s_{\rm NN}} \approx$ 7 GeV, \approx 50 Hz at start-up
 - ► Fixed-target mode: one beam + thin wire (50 μ m), $\sqrt{s_{\rm NN}}$ = 2.4-3.5 GeV \rightarrow Xe/Bi+W/Au at $\sqrt{s_{\rm NN}}$ \approx 3 GeV, \approx kHz at start-up

Multi-Purpose Detector (MPD) experiment at NICA

- Strategy: High luminosity scans in energy and system size to measure different signals.
- ► Advantages: Same apparatus for scans with benefits of collider geometry.
 - maximum phase space, correlated systematic effects for different systems and energies.
- ► Sub-systems with modern technologies: TPC, TOF, ECal, FFD, FHCal.
- ► Suitable for dilepton measurements: e+e- pairs.

Time Projection Chamber (TPC)

- ► 3D tracking + dE/dx measurement.
- ► The achieved accuracy of the energy loss is 6-7% and momentum resolution between 1-3%.
- ▶ Discrimination of charged pions from kaons up to momenta of \approx 0.7 GeV/c and kaons from protons up to \approx 1.1 GeV/c.
- 24+ ROC ready; 100+ % FE cards manufactured TPC gas volume assembly and HV/leakage tests – ongoing TPC + ECAL cooling systems under commissioning

Ready for installation by end of the year

Time Of Flight (TOF)

- ► Based on the technology of (MRPC).
- Measures time-of-flight of the track.
- All 28 (100%) TOF modules are assembled, tested, stored and ready for installation and Spare modules in production.
- ▶ Designed Time and coordinate resolution of \approx 80 ps and \approx 0.5 cm, respectively.
- ► Better PID perfomance is achieved when combined with TPC.

Ready for installation

Electromagnetic Calorimeter (ECal)

Expected installation by end of the year

- A shashlik type calorimeter made of Pb-scintillator sandwiches.
- Full configuration: 50 half-sectors in full azimuth (25 full sectors).
- Measures deposited energy and detect particles from 10 MeV to a few GeV.
- ► Energy resolution is about 7% at 1 GeV.
- 40 (45) half-sectors to be ready by August (October), the rest depends on WLS fiber supply.

Multi-Purpose Detector (MPD) Collaboration

MPD International Collaboration was established in 2018 to construct commission and operate the detector

12 Countries, >500 participants, 38 Institutions and JINR

Organization

Acting Spokesperson: Deputy Spokespersons: Institutional Board Chair Project Manager:

Victor Riabov

Zebo Tang, Arkadiy Taranenko Alejandro Avala

Slava Golovatyuk

Joint Institute for Nuclear Research.

A Alikhanyan National Lab of Armenia, Yereyan, Armenia:

Institute for Nuclear Problems of Belarusian State University. Belarus

Institute of Power Engineering of the National Academy of Sciences of Belarus, Belarus

University of Ploydiv, Bulgaria: Tsinghua University, Beijing, China:

University of Science and Technology of China, Hefei, China;

Huzhou University, Huizhou, China:

Institute of Nuclear and Applied Physics, CAS, Shandhai. China:

Central China Normal University. China: Shandong University Shandong China:

University of Chinese Academy of Sciences, Beijing, China:

University of South China. China:

Three Gorges University, China.

Institute of Modern Physics of CAS, Lanzhou, China: Egyptian Center for Theoretical Physics, Egypt;

Thilisi State University Thilisi Georgia Institute of Physics and Technology, Almaty, Kazakhstan;

Instituto de Ciencias Nucleares UNAM Mexico

Universidad Autónoma de Sinaloa. Mexico:

Universidad Autónoma Metropolitana. Mexico:

Universidad de Colima, Mexico:

Universidad Michoacana de San Nicolás de Hidalgo, Mexico;

Institute of Physics and Technology, Mongolia:

Belgorod National Research University. Russia: High School of Economics University Moscow Russia: Institute for Nuclear Research of the RAS, Moscow, Russia: National Research Nuclear University MEPhl . Moscow. Russia: Moscow Institute of Science and Technology, Russia;

North Ossetian State University, Russia: National Research Center "Kurchatov Institute" Russia:

National Research Tomsk Polytechnic University Russia: Peter the Great St. Petersburg Polytechnic University Saint Petersburg. Russia: Plekhanov Russian University of Economics, Moscow, Russia:

St.Petersburg State University, Russia: Skobeltsyn Institute of Nuclear Physics, Moscow, Russia; Petersburg Nuclear Physics Institute, Gatchina, Russia:

Vinča Institute of Nuclear Sciences, Serbia;

Pavol Jozef Šafárik University, Košice, Slovakia

Dileptons

- Penetrative probe of hot and dense nuclear matter.
 - Deconfinement
 - Chiral symmetry restoration
- Advantages:
 - ► Interacts electromagnetically
 - Large mean free path in contrasts to system size
 - Provide undistorted information at the time of their production.
- Challenges:
 - Overlapping signal—produce at different stages of the collision.
 - Inherit large combinatorial background from Dalitz as well as conversions.

i	Dilepton channels	
1	Dalitz decay of π^0 :	$\pi^0 \rightarrow \gamma e^+ e^-$
2 3	Dalitz decay of η :	$\eta \rightarrow \gamma l^+ l^-$
3	Dalitz decay of ω :	$\omega o \pi^0 l^+ l^-$
4 5	Dalitz decay of Δ :	$\Delta \rightarrow N l^+ l^-$
5	Direct decay of ω :	$\omega ightarrow l^+ l^-$
6	Direct decay of ρ :	$ ho ightarrow l^+ l^-$
6 7 8	Direct decay of ϕ :	$\phi \rightarrow l^+ l^-$
8	Direct decay of J/Ψ :	$J/\Psi \rightarrow l^+ l^-$
9	Direct decay of Ψ' :	$\Psi' ightarrow l^+ l^-$
10	Dalitz decay of η' :	$\eta' \rightarrow \gamma l^+ l^-$
11	pn bremsstrahlung:	$pn \rightarrow pnl^+l^-$
12	$\pi^{\pm}N$ bremsstrahlung:	$\pi^{\pm}N \rightarrow \pi N l^{+}l^{-}$

Dileptons

- Thermal dileptons provide direct fingerprint of the QGP and HG matter.
- Provide insights into fireball properties when measured in different invariant mass region.
- ► Intermediate Mass Region: Closely related to the initial temperature of the fire ball: "thermometer" for the heavy-ion collisions.
- Low Mass Region: Sum of QGP and hadronic contributions proportional to fireball lifetime: "chronometer" for heavy-ion collisions

Dilepton analysis

- ▶ UrQMD event generator is used to simulate heavy-ion events: 15 million minimum bias Bi+Bi collisions at $\sqrt{s_{\text{NN}}}$ = 9.2 GeV.
- ▶ Dielectron cocktail shapes and multiplicities in UrQMD were matched to those from PHSD event generator.
- ► To improve statistical significance, branching ratios of dielectron sources, except π^0 and η dalitz decays, were enhanced by factor 20.
- ► Challenges in dielectron measurements:
 - ► Small multiplicities as well as branching ratios of the signal dielectron sources compared to the background: analyses are statistics hungry.
 - Huge combinatorial background (CB) from photon conversions and Dalitz decays pairs: when one of the legs is not reconstructed.

For such complicated analysis, excellent detector performance is needed!

Track reconstruction and Particle Identification (PID)

- MPD has excellent track reconstruction and particle identification capabilities with the help of TPC, TOF and ECal.
- ► TPC measures momentum and provides resolution of about 1-3%.

Measures < dE/dX > as well with good resolution!

Track reconstruction and Particle Identification (PID)

- MPD has excellent track reconstruction and particle identification capabilities with the help of TPC, TOF and ECal.
- ► TPC measures momentum and provides resolution of about 1-3%.
- ► TPC alone is not enough to achieve pure electron sample.

The purity improves with TOF and ECal!

Electron reconstruction efficiency and Purity

- ▶ With TOF, purity reaches about 80% and efficiency of about 50% is achieved.
- ▶ The purity can reach up to 100% with the help of ECal along with nearly 45% efficiency: exceptional electron-hadron separation above $p \gtrsim 0.8$ GeV/c.

Such performance is crucial for dilepton analysis!

Benefit of Machine learning in PID

- 1-dimensional (1D) cuts on different discriminant variables suppress the efficiency significantly.
- Machine learning neural network methods such as Multi-layer Perceptrons (MLP) is helpful in enhancing the electron identification performance of the MPD.

Efficiency is improved by 50% above $p_{\rm T} >$ 0.8 GeV/c!

Dielectron invariant mass spectra

- Dedicated mass productions for dielectron analyses.
- Combinatorial background is removed using various analysis methods and techniques.
- ► S/B ratio up to 10% can be obtained in the invariant mass range 0.2 to 1.5 GeV/c2, however, a few hundred million events are required for meaningful signal measurements.

Precise and clear signal is expected with large statistics!

Conclusions

- MPD experiment is well equipped to measure dielectrons using dedicated sub-systems.
- ► All sub-systems are in advanced stage and ready for commissioning by end of the year → MPD is expected to begin operations in 2026.
- ► ECal provides excellent electron-hadron separation: leads to highly pure electron sample.
- \blacktriangleright Improvement in electron identification using Machine Learning tools \rightarrow enhances the signal.
- ► S/B up to 10% is measurable: more statistics needed for meaningful signal.
- Results are work in progress: higher statistics sample is being produced.
- Ongoing efforts to further suppress combinatorial background.

THANK YOU

Forward detectors

- ► FFD (Fast Forward Cherenkov Detector): Provides fast triggering of A+A collisions and generates the start-time (T0) pulse generation for the ToF detector with a time resolution better than 50 ps.
- \blacktriangleright Two FFD detectors at 2.7 $<|\eta|<$ 4.1
- ► FHCal (Forward Hadron Calorimeter): Event centrality and reaction plane measurements with potential for event triggering.
- ► Two FHCAL detectors at 2 < |η| < 5, ≈ 1x1 m² each

Ready for installation

Rejection of conversions

- ► DCA selection is very effective in reducing contributions from single conversion track as well as pairs in TPC vessels.
- Not so much at the beam pipe: source of combinatorials.

Benefit of ECal in dielectron analysis

- ▶ TPC and TOF PID is sufficient to get decent purity however, high p_T and invariant mass region is still contaminated.
- Additional information from ECal helps removing the contamination.