Hidden-charm strong decays of charmonium-like states Y(4230) and $X_2(4014)$

Gurjav Ganbold

Bogoliubov Laboratory of Theoretical Physics, JINR (Dubna)
Institute of Physics and Technology, MAS (Ulaanbaatar)

Outline

- Introduction (motivation)
- Approach in short
- ◆ I. Four-quark molecular-type content for Y(4230)
 - Strong decay $Y \rightarrow f_0 J/\Psi$
 - Scalar resonances f_0 decaying into $\pi^+\pi^-$ and K^+K^-
 - Strong cascade decays: $Y \rightarrow \pi^+\pi^- J/\Psi$ and $Y \rightarrow K^+K^- J/\Psi$
 - Numerical results
- ♦ II. Strong Decays of X₂(4014) into ω J/Ψ and ϱ⁰ J/Ψ
 - Isospin symmetry conservation and breaking
 - Strong decay widths $\Gamma(X_2 \to \omega J/\Psi)$ and $\Gamma(X_2 \to \varrho^0 J/\Psi)$
 - Numerical results

Introduction

Heavy meson spectrum -> several 'exotic' states (XYZ) with a common feature:
 minimal constituent quark-antiquark or three-quark structures do not work.

Y(4230)

- BaBar (2005) data analysis in production $e^+e^- \rightarrow \gamma_{ISR} \pi^+\pi^- J/\psi$ revealed a broad resonance ~4.26 GeV with $J^{PC} = 1^{--} => Y(4230)$ [aka $\psi(4260)$ or Y(4260)]
- Earlier studies: Y(4230) is not a conventional charmonium, no mass matching.

Some theoretical interpretations for Y(4230):

- a charmonium-hybrid ($c\bar{c}g$) state in Refs. [3–5]
- 1st orbital excitation of diquark-antidiquark state ([cs] [$\bar{c}\bar{s}$]) in Ref. [7]
- a $(\chi_{c1} \rho^0)$ molecule in Ref. [6]: but $\Gamma(Y \to \pi^+ \pi^- J/\psi) > \Gamma(Y \to D\overline{D})$ not observed
- a $(D\overline{D}_1)$ weak molecule: $Y \rightarrow \pi^- Z_c^+(3900)$ has been studied in Ref. [8,9,15]

$X_2(4014)$

- The first member of the XYZ family, the X(3872) state is located very close to the $(D\overline{D}^*)$ threshold -> considered as a shallow bound $J^{PC} = 1^{++}$ mesonic molecule.
- Does there exist a possible heavier partner of X(3872) with a similar value for the binding energy, but with $J^{PC} = 2^{++}$?

* Theory:

- various phenomenological models predict the existence of an isoscalar 2^{++} $(D^*\overline{D}^*)$ molecular partner of the X(3872).
- a compact tetraquark model has been employed to explore the 2⁺⁺ states.
- alternatively, within the conventional pattern of mesons, a 2^{++} tensor state with a similar mass could also be a conventional charmonium state in the first radial excitation $\chi_{c2}(3930)$.
- * Experiment: the Belle collaboration (2022) has reported a hint of an isoscalar structure with mass $M = 4014.3 \pm 4.0 \pm 1.5$ MeV and width $\Gamma = 4 \pm 11 \pm 6$ MeV, seen in the γ $\psi(2S)$ invariant mass distribution via a two-photon process.

Model framework (in short)

• Hadrons H(x) interact by quark exchanges, with hadron-quark coupling g_H .

$$L_{\rm int} = g_H H(x) J_H(x)$$

Interpolating quark current (for 4-quark meson):

$$J_{H}(x) = \int dx_{1} ... \int dx_{4} \, \delta(x - \omega_{1}x_{1} - \omega_{2}x_{2} - \omega_{3}x_{3} - \omega_{4}x_{4}) \cdot \Phi_{H} \left(\sum_{i < j}^{4} (x_{i} - x_{j})^{2} \right) \cdot J_{4q}^{\mu}(x_{1}, x_{2}, x_{3}, x_{4})$$

$$\omega_{j} = m_{j} / (m_{1} + m_{2})$$

Vertex function (Fourier transformation)

$$\Phi_H(-Q^2) = \exp\left(\frac{Q^2}{\Lambda_H^2}\right)$$

 $\Lambda_{H} \, \sim \text{hadron "size"}$

Quark propagator (in the Schwinger representation):

$$S_m(\hat{p}) = \frac{m + \hat{p}}{m^2 - p^2} = (m + \hat{p}) \cdot \int_0^\infty d\alpha \exp\left[-\alpha (m^2 - p^2)\right]$$

The compositeness condition eliminates the bare fields from consideration.

[A.Salam, S.Weinberg (1962-1964)]

$$Z_{H} = \langle H_{bare} | H_{phys} \rangle^{2} = 1 - g_{ren}^{2} \Pi'_{H}(M_{H}^{2}) = 0$$

• *Eliminating singularties*: The integration over loop momenta can be performed for arbitrary Feynman diagram with n-quark propagators. The final multidimensinal integration over an infinite space of the Fock-Schwinger parameters may be **transformed** into an integral over a simplex convoluted with only one-dimensional improper integral:

$$\Pi = \int_{0}^{\infty} d^{n} \alpha W(\alpha_{1}, \dots, \alpha_{n}) = \int_{0}^{\infty} d^{n} \alpha \underbrace{\int_{0}^{\infty} dt \, \delta\left(t - \sum_{i=1}^{n} \alpha_{i}\right)}_{=1} W(\alpha_{1}, \dots, \alpha_{n})$$

$$= \int_{0}^{\infty} dt \, t^{n-1} \int_{0}^{\infty} d^{n} \alpha \, \delta\left(1 - \sum_{i=1}^{n} \alpha_{i}\right) W(t\alpha_{1}, \dots, t\alpha_{n}),$$

A cut-off makes the integral to be an analytic function without any singularities:

$$\int_{0}^{\infty} dt \ t^{n-1} \dots \to \int_{0}^{1/\lambda^{2}} dt \ t^{n-1} \dots$$

- Model parameters: A hadron in the CCQM is characterized by:
 - the global infrared confinement parameter
 - the constituent quark masses
 - the hadron size parameter

λ (universal)

 $m_{u,d} m_s m_c m_b$ (common)

 $\Lambda_{\rm H}$ (adjustable)

I. Strong decays of charmonium-like state Y(4230)

◆ Experimental data: • PDG-2024

State	JPC	Mass (MeV)	Full width (Γ)	Modes	Fraction (Γ_i / Γ)
Y	1	4222.1 ± 2.3	49 ± 8 MeV	π ⁺ π ⁻ J/Ψ, K ⁺ K ⁻ J/Ψ	seen

BES-III Collaboration (2024):

$$\mbox{M}_{\mbox{\scriptsize Y}}$$
 = 4225.3 \pm 2.3 \pm 21.5 MeV
$$\mbox{\Gamma}_{\mbox{\scriptsize Y}}$$
 = 72.9 \pm 6.1 \pm 30.8 MeV

$$0.02 < \frac{B(Y \to K^+K^-J/\Psi)}{B(Y \to \pi^+\pi^-J/\Psi)} < 0.26$$

- ♦ Some theoretical interpretations for Y(4230):
 - a charmonium-hybrid ($c\bar{c}g$) state in Refs. [3–5]
 - 1st orbital excitation of diquark-antidiquark state ([cs] [c̄s̄]) in Ref. [7]
 - a (χ c1 ρ 0) molecule in Ref. [6]: but $\Gamma(Y \rightarrow \pi + \pi J/\psi) > \Gamma(Y \rightarrow D^-D)$ not observed
 - a $(D\overline{D}_1)$ weak molecule: $Y \rightarrow \pi Z_c^+(3900)$ has been studied in Ref. [8,9,15]

CCQM approach to $Y \rightarrow \pi^{+}\pi^{-}J/\Psi$ and $Y \rightarrow K^{+}K^{-}J/\Psi$

in collaboration with M. A. Ivanov (BLTP JINR), Eur. Phys. J. A 60:13 (2024)

• We consider the Y(4230) as a 4-quark state with a molecular-type interpolating current.

$$J_{4q}^{\mu}(x_1, x_2, x_3, x_4) = \frac{1}{\sqrt{2}} \left\{ [\overline{q}(x_3)\gamma_5 c(x_1)] \cdot [\overline{c}(x_2)\gamma^{\mu}\gamma_5 q(x_4)] + (\gamma_5 \leftrightarrow \gamma^{\mu}\gamma_5) \right\}, \quad q = \{u, d\}$$

- We suggest the following sequential (cascade) two-body decay scheme:
- first, the Y(4230) decays into the J/ψ and the scalar resonance $f_0 = \{f_0(500), f_0(980)\}$,
- then, f_0 decays into two mesons, either $\pi^+\pi^-$, or K^+K^- , wherever it is actual.

• We note that the description of the cc^- - qq^- transitions, which go via gluon exchange, is out of the CCQM scope.

Decay $Y \rightarrow J/\Psi + f_0$

State	JPC	Mass (MeV)	Full width (Γ)	Modes	Fraction (Γ_i / Γ)
\mathbf{f}_0 (500)	0++	400 - 550	100 - 800 MeV	π+ π-	seen
\mathbf{f}_{0} (980)	0++	980 - 1010	10 - 100 MeV	π ⁺ π ⁻ , K ⁺ K ⁻	dominant, seen

Further we use the notation $S = \{S_1, S_2\} = \{f_0(500), f_0(980)\}$ for simplicity.

- There is no consensus on the matter of precise f_0 quark structure, whether one deals with a quark-antiquark or rather a four-quark composite.
- We neglect higher Fock contributions to the f_0 bound states and treat the scalar resonances $f_0(500)$ and $f_0(980)$ as quark-antiquark states.

Matrix element:

$$\mathbf{M}_{YVS}(Y(p,\varepsilon_p^{\mu}) \to J/\Psi(p_1,\varepsilon_{p_1}^{\nu}) + f_0(q)) = \varepsilon_p^{\mu} \varepsilon_{p_1}^{*\nu} \left(B \cdot g^{\mu\nu} + C \cdot p_1^{\mu} q^{\nu} \right)$$

Decay S → P+P-

$$\Gamma_{SPP}(q^2) = \frac{\left|\vec{q}_1\right|}{8\pi q^2} \cdot G_{SPP}^2(q^2)$$

A rough estimate of the ratio of decay widths:

$$\frac{\Gamma_{S_1\pi^+\pi^-}(M_{S_1}^2)}{\Gamma_{S_2\pi^+\pi^-}(M_{S_2}^2)} \approx \frac{g_{S_1}^2 M_{S_2}^3}{g_{S_2}^2 M_{S_1}^3} \frac{\lambda^{1/2}(M_{S_1}^2, M_{\pi}^2, M_{\pi}^2)}{\lambda^{1/2}(M_{S_2}^2, M_{\pi}^2, M_{\pi}^2)} \approx 59.$$

• A rough model-independent estimate of the ratio:

For a model-independent case (if $g_{S_1}^2 = g_{S_2}^2$), the approximate ratio is ≈ 3 . The two-body decay channel $f_0(500) \rightarrow \pi^+\pi^-$ may strongly dominate over $f_0(980) \rightarrow \pi^+\pi^-$.

Cascade Decays: $Y \rightarrow V + f_0(P^+P^-)$

- $f_0(500) + f_0(980)$: for $\pi^+\pi^-$
- $f_0(980)$ only: for K^+K^-

ullet The conventional Breit-Wigner amplitude (propagator) for the scalar $S=f_0$

$$D_{S}(q^{2}) = \frac{1}{q^{2} - M_{S}^{2} + i M_{S} \Gamma_{S}(q^{2})} \doteq \frac{1}{A_{S}(q^{2}) + i B_{S}(q^{2})}$$

• The Breit-Wigner distribution for a solely scalar resonance S:

$$BW_{S}(q^{2}) = \frac{\sqrt{q^{2}}}{\pi} \frac{1}{A_{S}^{2}(q^{2}) + B_{S}^{2}(q^{2})}$$

• A reasonable approximation:

$$\Gamma_{S}(q^2) \simeq \Gamma_{SPP}(q^2)$$

• We adopt a modified Breit-Wigner form for the intermediate f_0 - propagators:

$$BW_{S}(q^{2}) = \frac{\sqrt{q^{2}}}{\pi} \frac{1}{(q^{2} - M_{S}^{2})^{2} + (M_{S}\Gamma_{S})^{2} \left[R_{S}^{P}(q^{2})\right]^{2}}$$

where a correction function is defined:

$$R_S^P(q^2) \doteq \frac{M_S^2}{q^2} \left(\frac{q^2 - 4M_P^2}{M_S^2 - 4M_P^2} \right)^{1/2}, \quad R_S^P(4M_P^2) = 0, \quad R_S^P(4M_S^2) = 1.$$

Fig. 5 The correction functions $R^{\pi}_{f_0(500)}(q^2)$ (dashed, first plot), $R^{\pi}_{f_0(980)}(q^2)$ (solid, first plot) and $R^{K}_{f_0(980)}(q^2)$ (dashed, second plot). The horizontal axes are bound by $4M_P^2 < q^2 < (M_Y - M_J/\psi)^2$

The Breit-Wigner distributions – the conventional versus a modified:

Fig. 6 The Breit-Wigner distributions for decays $f_0(500) \to \pi^+\pi^-$ (first plot) and $f_0(980) \to K^+K^-$ (second plot). The dashed (blue) curves correspond to the versions with nontrivial correction functions

defined in Eq. (26), while the dotted (yellow) curves simulate the conventional approximations with $R_S^P(q^2) \doteq 1$

Integration limits:

$$4M_P^2 \doteq q_{\min}^2 < q^2 < q_{\max}^2 \doteq (M_Y - M_{J/\Psi})^2$$

Numerical Integration over q²

$$\Gamma(Y \to \pi^{+}\pi^{-}J/\psi)$$

$$= \int_{4M_{\pi}^{2}}^{q_{\text{max}}^{2}} \left\{ \Gamma_{YJS_{1}}(q^{2}) BW_{S_{1}}(q^{2}) \Gamma_{S_{1}\pi^{+}\pi^{-}}(q^{2}) \right.$$

$$\left. + BW_{X_{12}}(q^{2}) \left[\Gamma_{YJS_{1}}(q^{2}) \Gamma_{S_{2}\pi^{+}\pi^{-}}(q^{2}) \right.$$

$$\left. + \Gamma_{YJS_{2}}(q^{2}) \Gamma_{S_{1}\pi^{+}\pi^{-}}(q^{2}) \right]$$

$$\left. + \Gamma_{YJS_{2}}(q^{2}) BW_{S_{2}}(q^{2}) \Gamma_{S_{2}\pi^{+}\pi^{-}}(q^{2}) \right\},$$

$$q_{\min(\pi\pi)}^2 = 4M_{\pi}^2,$$

 $q_{\max}^2 = (M_Y - M_{J/\Psi})^2.$

$$\Gamma(Y \to K^+ K^- J/\psi)$$

$$= \int_{4M_K^2}^{q_{\text{max}}^2} dq^2 \, \Gamma_{YJS_2}(q^2) \, BW_{S_2}(q^2) \Gamma_{S_2K^+K^-}(q^2).$$

$$q_{\min(KK)}^2 = 4M_K^2,$$

 $q_{\max}^2 = (M_Y - M_{J/\Psi})^2.$

Numerical results

* $\Gamma_1(Y \to f_0 J/\Psi)$, $\Gamma_4(Y \to \pi^+\pi^-J/\Psi)$ and $\Gamma_5(Y \to K^+K^-J/\Psi)$ depend strongly on Λ_Y :

Fig. 7 Dependence of the sum of partial decay widths $\Gamma(Y \to J/\psi f_0(500)) + \Gamma(Y \to J/\psi f_0(980)) + \Gamma(Y \to K^+K^-J/\psi) + \Gamma(Y \to \pi^+\pi^-J/\psi)$ on size parameter Λ_Y . The horizontal (green) band depicts the full width data $\Gamma_Y = 49 \pm 8 \text{MeV}$ [1]

$$\Gamma_{V} \approx 49 \pm 8 \; MeV$$

We fix:
$$\Lambda_{\rm Y} = 5.15 \pm 0.26 \; {\rm GeV}$$

* Numerical results on the decay widths (MeV) and the branching ratio

Decays	CCQM	CCQM (R=1)	PDG (2024)
$\Gamma(\mathrm{Y} \to \mathrm{J/\Psi} + \mathrm{f_0}(500)$	0.32 ± 0.03	0.32 ± 0.03	$\Gamma_{ m Y}$ = 49 ± 8
$\Gamma(Y \rightarrow J/\Psi + f_0(980)$	0.47 ± 0.05	0.47 ± 0.05	$\Gamma_{ m Y}$ = 49 ± 8
$\Gamma(\mathbf{f}_0(980) \to \mathbf{K}^+ + \mathbf{K}^-)$	30.2 ± 3.1	30.2 ± 3.1	$\Gamma_{ m f0(980)} = 10 - 100$
$\Gamma(f_0(500) \to \pi^+ + \pi^-)$	10.7 ± 1.2	10.7 ± 1.2	$\Gamma_{\rm f0(500)} = 400 - 700$
$\Gamma(f_0(980) \to \pi^+ + \pi^-)$	34.6 ± 3.5	34.6 ± 3.5	$\Gamma_{\rm f0(980)} = 10 - 100$
$\Gamma(Y \rightarrow J/\Psi + K^+ + K^-)$	1.2 ± 0.1	5.1 ± 0.6	$\Gamma_{ m Y}$ = 49 ± 8
$\Gamma(Y \to J/\Psi + S_1(\pi^+ + \pi^-)$	24.5 ± 2.5	23.1 ± 2.4	$\Gamma_{ m Y}$ = 49 ± 8
$\Gamma(Y \to J/\Psi + S_1(\pi^+ + \pi^-)$	1.1 ± 0.1	1.1 ± 0.1	$\Gamma_{ m Y}$ = 49 ± 8
$\Gamma(Y \to J/\Psi + S_1(\pi^+ + \pi^-)$	9.5 ± 1.0	9.3 ± 1.0	$\Gamma_{ m Y}$ = 49 ± 8
$\Gamma(Y \to J/\Psi + \pi^+ + \pi^-)$	35.1 ± 3.6	33.4 ± 3.5	$\Gamma_{ m Y}$ = 49 ± 8
$\left[\frac{B(Y \to K^+ K^- J/\Psi)}{B(Y \to \pi^+ \pi^- J/\Psi)}\right]_{INTEG}$	0.033 ± 0.005	0.15 ± 0.03	0.02 - 0.26 (BESIII, 2024)

Our findings:

- The two-body decay of the wide resonance $f_0(500)$ into the $\pi^+\pi^-$ pair is dominated by the same decay of the narrow resonance $f_0(980)$.
- The decay widths $\Gamma(Y \to J/\psi f_0(500))$ and $\Gamma(Y \to J/\psi f_0(980))$ differ insignificantly despite the large mass difference between the final scalar mesons.
- The ratio $\Gamma(f_0(980) \to \pi^+\pi^-) / [\Gamma(f_0(980) \to \pi^+\pi^-) + \Gamma(f_0(980) \to K^+K)] \approx 0.53$ does not contradict the BaBar (2006) and BESIII (2005) data.
- Taking into account the modified Breit-Wigner distribution function instead of its conventional form considerably decreases the decay width $\Gamma(Y \to K^+ J/\psi)$.
- The estimated branching ratio

$$\left[\frac{B(Y \to K^+ K^- J/\Psi)}{B(Y \to \pi^+ \pi^- J/\Psi)} \right]_{INTEG} \approx 0.033 \pm 0.005$$

is located is near the experimental lower bound reported by the BESIII.

II. Strong decays of the spin-2 partner of charmonium-like state X(3872)

- The first member of the XYZ family, the X(3872) state is located very close to the $(D\overline{D}^*)$ threshold -> considered as a shallow bound $J^{PC} = 1^{++}$ mesonic molecule.
- Does there exist a possible heavier partner of X(3872) with a similar value for the binding energy, but with $J^{PC} = 2^{++}$?

* Theory:

- various phenomenological models predict the existence of an isoscalar 2^{++} $(D^*\overline{D}^*)$ molecular partner of the X(3872).
- a compact tetraquark model has been employed to explore the 2⁺⁺ states.
- alternatively, within the conventional pattern of mesons, a 2^{++} tensor state with a similar mass could also be a conventional charmonium state in the first radial excitation $\chi_{c2}(3930)$.
- * Experiment: the Belle collaboration (2022) has reported a hint of an isoscalar structure with mass $M = 4014.3 \pm 4.0 \pm 1.5$ MeV and width $\Gamma = 4 \pm 11 \pm 6$ MeV, seen in the γ ψ (2S) invariant mass distribution via a two-photon process.

How to discriminate the various multiquark configurations of the X2(4014)?

• An easiest way to disentangle these different multiquark configurations is to analyze the mass splitting $\triangle M = M_{\chi_{2}(4014)} - M_{\chi_{3872}}$ between the **1**⁺⁺ and **2**⁺⁺ states:

• molecular approach: $\triangle M \approx 140 \text{ MeV}$ (Refs[14,32])

• tetraquark model: $\triangle M \approx 80 \text{ MeV}$ (Refs[33])

• excited charmonium scheme: $\triangle M \approx 30 - 40 \text{ MeV}$ (Refs[27,28])

• Another more complicated, but more reliable way is to investigate the decay properties of the X_2 (4014) tensor state:

• molecular approach: $\Gamma(X_2 \to D\overline{D} + D\overline{D}^*) \approx \text{a few MeV}$ (Refs[25])

 $\Gamma(X_2 \rightarrow D\overline{D} + D\overline{D}^*) \approx 50 \text{ MeV}$ (Refs[26])

• excited charmonium scheme: $\Gamma(X_2 \rightarrow \text{charmed}) \approx \text{tens of MeV}$ (Refs[34])

Isospin violation in strong decays of X(3872)

By using the relevant data from the recent LHCb experiment (2023):

$$B(X(3872) \rightarrow \rho^0 J/\Psi) = (2.8 \pm 0.7)\%$$
 and $B(X(3872) \rightarrow \omega J/\Psi) = (4.1 \pm 1.4)\%$:

$$BR_X \approx 1.5$$
.

- These data indicate a severe isospin violation.
- The decay X(3872) \rightarrow 3 π J/ Ψ via $\omega \rightarrow$ 3 π is suppressed kinematically (see Fig.2).

FIG. 2. The behaviors of the effective differential widths of the decays $X(3872) \rightarrow \omega(\rightarrow 3\pi)J/\Psi$ (the yellow solid curve) and $X(3872) \rightarrow \rho(\rightarrow 2\pi)J/\Psi$ (the blue dashed line). Hereby, we

- The strong decay $X_2 \to \omega J/\psi$ conserves isospin, while the other process $X_2 \to \rho^0 J/\psi$ breaks isospin symmetry.
- The new observed $X_2(4014)$ is considering as the spin-2 partner of X(3872). One may expect that the decays of X_2 into ρ^0 J/ ψ will proceed with strong isospin violation.
- Hereby, since the mass of X_2 is above the $\rho^0(\omega)$ J/ ψ thresholds the decay into $\omega(\to 3\pi)$ J/ Ψ is not suppressed, that may be seen below in Fig.3.
 - ♦ Sizeable isospin violating decays of X₂ may be expected.

FIG. 3. The behaviors of the effective differential widths of the decays $X(4014) \rightarrow \omega(\rightarrow 3\pi)J/\Psi$ (the yellow solid curve) and $X(4014) \rightarrow \rho(\rightarrow 2\pi)J/\Psi$ (the blue dashed line). Hereby, we

Isospin violation in strong decays of $X_2(4014)$

Consider the ratio of the branching fractions:

$$BR_{X_2} \doteq \frac{\Gamma(X_2 \to \omega J/\Psi)}{\Gamma(X_2 \to \rho^0 J/\Psi)}$$

- It has recently been investigated using the an effective Lagrangian approach by assuming the X_2 as a molecular state of $(D^*\overline{D}^*)$. The only contributions from the triangle hadron loops made of the charmed mesons D^* and \overline{D}^* have been considered.
- It has been found that the decay widths are quite sensitive to the X_2 mass. At the present center mass $M_{X2} = 4.0143$ GeV, the widths were estimated:

$$\Gamma(X_2 \to \rho^0 J/\Psi) \approx 10^1 \text{ keV}$$

and
$$\Gamma(X_2 \to \omega J/\Psi) \approx 10^2 - 10^3 \text{ keV}:$$

$$BR_{X2} \approx 15 \text{ !}$$

(one order of magnitude larger than $BR_{\chi} \approx 1.5$)

CCQM approach to the strong decays of $X_2(4014)$

in collaboration with M. A. Ivanov (BLTP JINR), Phys.Rev. D 111, 014007 (2025)

• We consider the $X_2(4014)$ as a 4-quark state with a molecular-type interpolating current:

$$J_{X_2}^{\mu}(x_1, x_2, x_3, x_4) = \frac{1}{\sqrt{2}} \left\{ [\overline{q}(x_3) \gamma^{\mu} c(x_1)] \cdot [\overline{c}(x_2) \gamma^{\nu} q(x_4)] + (\gamma^{\mu} \leftrightarrow \gamma^{\nu}) \right\}, \quad q = \{u, d\}$$

• Decay schemes: $X_2 \rightarrow \rho^0 J/\Psi$ and $X_2 \rightarrow \omega J/\Psi$

Matrix element:

$$\mathbf{M}_{X_2JV} = i(2\pi)^4 \delta^{(4)}(p-p-p) \varepsilon_{\mu\nu}(p) \varepsilon_{\rho}^*(p_1) \varepsilon_{\sigma}^*(p_2) \cdot T_{X_2JV}^{\mu\nu\rho\sigma}(p_1, p_2)$$

We calculate:

$$\begin{split} |\mathcal{M}_{X_2JV}|^2 &\sim |\varepsilon_{\mu\nu}(p)\varepsilon_\rho^*(p_1)\varepsilon_\nu^*(p_2)T_{X_2JV}^{\mu\nu\rho\sigma}|^2 \\ &= M_{X_2}^4(C_A^V \cdot A_V^2 + C_{AB}^V \cdot A_V \cdot B_V + C_B^V \cdot B_V^2), \end{split}$$

Coefficients are completely defined through the meson masses as follows:

$$\begin{split} C_A^V &\doteq [(3+2\xi_V)\xi_J^4 + (1-\xi_V)^4(3+2\xi_V) + (28+20\xi_V - 8\xi_V^2)\xi_J^3 \\ &\quad + 4\xi_J(1-\xi_V)^2(7+5\xi_V - 2\xi_V^2) - 2\xi_J^2(31-52\xi_V + 27\xi_V^2 - 6\xi_V^3)]/(12\xi_J), \\ C_{AB}^V &\doteq [\xi_J^4(7-2\xi_V) - (1-\xi_V)^4(3+2\xi_V) - 2\xi_J^3(9+5\xi_V - 4\xi_V^2) \\ &\quad + 2\xi_J(1-\xi_V)^2(1+5\xi_V + 4\xi_V^2) + 4\xi_J^2(3-\xi_V + \xi_V^2 - 3\xi_V^3)]/(6\xi_J), \\ C_B^V &\doteq [3+4\xi_J + 2\xi_V)(\xi_J^2 + (1-\xi_V)^2 - 2\xi_J(1+\xi_V)]^2/(12\xi_J), \end{split}$$

$$\xi_J \doteq M_{J/\psi}^2 / M_{X_2}^2$$
 and $\xi_V \doteq M_V^2 / M_{X_2}^2$ for $V = \{\rho^0, \omega\}$.

The two-body strong decay width reads:

$$\Gamma_{X_2JV} = \frac{1}{2S+1} \frac{\left| \vec{p}_1 \right|}{8\pi M_{X_2}^2} \sum_{polariz} \left| \mathbf{M}_{X_2JV} \right|^2$$

where S=2 is the spin of X₂, final state three-momentum and the Kallen kinematical function:

$$\left|\vec{p}_{1}\right| \doteq \frac{1}{2M_{X_{2}}} \lambda^{1/2} (M_{X_{2}}^{2}, M_{J\Psi}^{2}, M_{V}^{2}), \quad \lambda(x, y, z) \doteq x^{2} + y^{2} + z^{2} - 2(xy + xz + yz).$$

Numerical results

1. Early experimental data and rough theoretical estimates:

TABLE III. The known data from early experiments of *BABAR* [65], Belle [66], and BESIII [67] for the strong-decay width ratio $\text{BR}_X^{\text{expr}} \doteq \Gamma(X(3872) \rightarrow \omega J/\psi)/\Gamma(X(3872) \rightarrow \rho^0 J/\psi)$ and corresponding rough recalculations for $\text{BR}_X^{\text{rough}}$ [59].

	<i>BABAR</i> [65]	Belle [66]	BESIII [67]
BR_X^{expr}	0.8	1.0	1.43
BR_X^{rough}	0.9	1.1	1.6

2. Central values of the CCQM parameters of the CCQM are determined by minimizing χ^2 in a fit to the available experimental data and some lattice results. The fitted parameters may vary around their central value by about $\pm 10\%$.

λ	m _{u/d}	m _s	m _c	$\Lambda_{\mathrm{J/\Psi}}$
0.181 GeV	0.241	0.428	1.67	1.55

3. The renormalized couplings g_H of the mesons (H=J/ ψ , ω , ρ^0) in dependence on Λ_H :

4. A simple and rough approximation to the desired branching ratio BR_{χ_2} by neglecting the difference in matrix elements :

$$\frac{\lambda^{1/2}(M_{X_2}^2, M_{J/\psi}^2, M_{\omega}^2)}{\lambda^{1/2}(M_{X_2}^2, M_{J/\psi}^2, M_{\rho^0}^2)} \approx 0.976, \quad \frac{g_{\omega}^2}{g_{\rho^0}^2} \approx 0.780.$$
 \longrightarrow $BR_{X_2}^{approx} \approx 0.762$

5. Accurate calculations: The partial decay widths in dependence on Λ_{X2} :

Λ_{X_2} [GeV]	3.0	3.5	4.0	4.5	5.0
$\frac{\Gamma(X_2 \to \omega J/\psi) \text{ [keV]}}{\Gamma(X_2 \to \rho^0 J/\psi) \text{ [keV]}}$ $\frac{\Gamma(X_2 \to \rho^0 J/\psi) \text{ [keV]}}{BR_{X_2}^{CCQM}}$	1600.9		120.9	47.5	21.5

Almost cancellation or at least weakening of the size-dependence!

6. Accurate calculations: The partial decay widths in dependence on M_{χ_2} :

Recently (Ref[59](2024)), the decays X₂ → ω J/ψ and X₂ → ρ⁰ J/ψ via the intermediate meson loops have been estimated in within the effective field theory within a molecular picture.
 The decay widths were strongly dependent on the X₂ mass.

• Our numerical results show that the decay widths monotonically increase with no peaks and drops in the mass interval from 4.010 to 4.020 GeV; the width ranges from 260 to 274 keV for $X_2 \rightarrow \omega J/\psi$, while for $X_2 \rightarrow \rho^0 J/\psi$, it is between 227 and 240 keV, by keeping the branching ratio almost constant: $(BR_{Y2})^{CCQM} \approx 1.14$

TABLE IV. Comparison of some theoretical predictions for the strong decay width ratio $BR_{X_2} \doteq \Gamma(X_2(4014) \rightarrow \omega J/\psi) / \frac{\Gamma(X_2(4014) \rightarrow \rho^0 J/\psi)}{M_{\odot}}$

M_{X_2} [GeV]	4.0137	4.0143	4.0167
$BR_{X_2}^{(EFT)}$ [59]	~3.0	~15.0	~103
$\mathrm{BR}_{X_2}^{(\mathrm{CCQM})}$	~1.143	~1.144	~1.144

FIG. 7. The dependencies of the partial decay widths $\Gamma(X_2 \to \omega J/\psi)$ and $\Gamma(X_2 \to \rho^0 J/\psi)$ on the exotic state mass M_{X_2} for a fixed size parameter value $\Lambda_{X_2} = 3.70$ GeV.

Summary - our findings:

 A simple and rough approximation by taking into account only effects due to the phase space factors and renormalized couplings results in the branching ratio:

$$BR_{X2} \approx 0.762$$
.

• Our numerical results show that the decay widths monotonically increase with no peaks and drops in the mass interval from 4.010 to 4.020 GeV; the width ranges from 260 to 274 keV for $X_2 \rightarrow \omega$ J/ ψ , while for $X_2 \rightarrow \rho^0$ J/ ψ , it is between 227 and 240 keV, by keeping the branching ratio almost constant:

$$(BR_{x2})^{CCQM} \approx 1.14$$

• The reason is simple: the hidden charm decays of the X_2 in our approach occur via the confined quark loops but not the charmed D^* and \overline{D}^* meson loops, so with no threshold effects.