Experiment to Demonstrate a Possibility of Creation of the **Tensor Polarized Heavy Ion Beam** in the NICA Injection Complex V.V, Bleko. E. E. Donets, V. A. Lebedev, S. S. Shimansky **JINR**

> LXXXV International Conference "Nucleolus-2025" St Petersburg, Russia July 1-6, 2025

<u>Objectives</u>

Study of collisions of polarized protons and deuterons create an insight into their structure, and in particular their spin structure
It is important part of NICA collider program (SPD detector)
Polarization o heavy ions creates another degree of freedom in collisions of heavy ions

• Shell structure

How to get the "clean" data for such studies? - Collide polarized beams!

«...We benchmark this method in collisions of ... uranium-238 nuclei, known for their elongated, ... shape. Our findings show a large deformation with a slight deviation from axial symmetry in the nuclear ground state, ... This approach offers a new method for imaging nuclear shapes, enhances our understanding of the initial conditions in high-energy collisions and addresses the important issue of nuclear structure evolution across energy scales.» [1]

Does nuclear spin contribute to magnetic field of magnetars [2]
 [1] Nature, vol. 635, pages 67–72 (2024) STAR Collaboration
 [2] e-Print: 2408.05281 [astro-ph.HE]

How to get Polarized Heavy lons

- To support collider operation the intensity of NICA injection complex has to be increased by ~2 orders of magnitude relative to the intensity achieved in Run IV (Oct. 2022 – Feb. 2023)
 - Required intensity is $\sim (2-10) \cdot 10^8$ heavy ions in ~ 6 s accel. cycle
 - It will be achieved by reduction of beam loss in the course of beam acceleration and the beam accumulation in Booster

Such intensity increase creates a possibility to make tensor-polarized heavy ions if these ions have large quadrupole moment aligned with spin

• Quadrupole deformation is described by β_2 :

$$R = \frac{a}{b} = \frac{1 + \sqrt{5/4\pi}\beta_2}{1 - \sqrt{5/4\pi}\beta_2}$$
$$\sigma_{\parallel} = \pi a^2$$

$$\sigma_{\perp} = \pi a b$$

a b

⇒ Beam obtains tensor polarization after passing few nuclear lengths

NICA Collider Complex Layout

Injection complex is already in commissioning for few years

- Previous Run achievement (Feb.2023): (5-8)·10⁶ fully stripped Xe ions at the top Nuclotron energy of 3.9 GeV/u was achieved
- Demonstrated accumulation of five pulses at 200 ms resulting $6 \cdot 10^7$
- Collider operation needs: $(2-10) \cdot 10^8$

Short Experiment Description

- Send ²¹Ne beam on the target
 - Use slow extraction
 - Focus the beam into small spot to reduce effect of multiple scattering in the target
 - Obtain tensor polarized beam at the exit after loss of >90% beam
 - ¹ 1st stage collimation reduces radiation induced by fragments
- 2nd stage collimation
 - Bending magnets span particles in the momentum
 - Collimator removes off momentum particles
 - Beam comes to the second target surrounded by detectors
 - Counts number of interacting particles. That enables to measure cross section – i.e. polarization

Measurement of the interaction cross section in the absence of the first target yields effect of the polarization on the cross section

Experiment Layout

ELECTRONS IN MONITORS

Beam Optics

 β -functions and rms sizes in the beam-line (Nuclotron extraction to final collimator); $\beta^*=80$ cm Experiment to Demonstrate Creation of Tensor Polarized Heavy Ion Beam at NICA, July 2025 Page | 9

Value of the Polarization

Dependence of tensor polarization for ²¹Ne beam on the target thickness (left) and on the percentage of survived particles (left) for beryllium target

Same as above but for the lead target

Candidates for Demonstration Experiment

- There are large number of nuclei which can be used
 We choose ²¹Ne for the demonstration experiment
 - Straightforward to use it in the KRION ion source
 - $\beta_2 = 0.463$ (a/b=1.52)
 - ◆ S=3/2
 - ◆ G=-1.463

	0	1	2	3	4	5			0			0
0	"#Z"	"A"	"Name"	"beta_2"	"S,P"	"mu"		0	0		0	0
1	1	1	"H"	0	"1/2+"	2.79		1	1		1	5.58
2	1	2	"D"	0	"1+"	0.857		2	1		2	0.857
3	2	3	"He"	0	"1/2+"	-2.13		3	1		3	-4.26
4	10	21	"Ne"	0.463	"3/2+"	-0.662	Γ	4	1.513		4	-0.441
5	12	24	"Mg"	0.393	"2+"	1.02		5	1.424		5	0.51
6	12	25	"Mg"	0.346	"5/2+"	-0.855		6	1.367		6	-0.342
7	12	26	"Mg"	-0.351	"2+"	1		7	0.701		7	0.5
8	14	28	"Si"	-0.36	"2+"	1.1		8	0.694		8	0.55
9	42	100	"Mo"	0.25	"2+"	0.7		9	1.257		9	0.35
10	46	110	"Pd"	0.24	"2+"	0.62		10	1.246		10	0.31
11	63	153	"Eu"	0.486	"5/2+"	1.532		11	1.543		11	0.613
12	64	158	"Gd"	0.28	"2+"	0.78		12	1.291		12	0.39
13	64	160	"Gd"	0.28	"2+"	0.72		13	1.291		13	0.36
14	65	159	"Tb"	0.31	"3/2+"	2.014	a_b =	14	1.325	g=	14	1.343
15	67	165	"Ho"	0.284	"7/2-"	4.177		15	1.295		15	1.193
16	70	173	"Yb"	0.313	"5/2-"	-0.648		16	1.329		16	-0.259
17	71	175	"Lu"	0.29	"7/2+"	2.23		17	1.302		17	0.637
18	71	176	"Lu"	0.29	"7-"	3.17		18	1.302		18	0.453
19	72	176	"Hf"	0.278	"2+"	0.63		19	1.288		19	0.315
20	72	177	"Hf"	0.277	"7/2-"	0.793	1	20	1.287		20	0.227
21	72	179	"Hf"	0.267	"9/2+"	-0.641		21	1.276		21	-0.142
22	73	181	"Ta"	0.255	"7/2+"	2.37		22	1.262		22	0.677
23	74	184	"W"	0.23	"2+"	0.578		23	1.235		23	0.289
24	79	197	"Au"	0.089	"3/2+"	0.146		24	1.087		24	0.097
25	83	209	"Bi"	-0.042	"9/2-"	4.11		25	0.961		25	0.913
26	90	232	"Th"	0.2	n_n	0		26	1.202		26	0
27	92	235	"U"	0.215	"7/2-"	-0.38		27	1.218		27	-0.109
28	92	238	"U"	0.236	n_n	0		28	1.241		28	0
29	93	237	"Np"	0.226	"5/2+"			29	1.23		29	1.256

0

Ο

1.79

-0.143

-4.195

-1.463

-0.49

-1.356

-0.458

-0.45

-0.583

-0.629

-0.256

-0.519

-0.55

0.642

0.47

-1.32

-0.215

-0.439

-0.615

-0.722

-1.177

-0.161

-0.641

-0.879

-1.139

0.15

-1

-1

0.6

0

1

2

3

4

5

6

7

8

9

10

11

12

13

G = 14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Choice of Parameters

Sufficiently large energy of the primary ions

- Reduction of ionization loss on energy of exiting ions (>3 GeV/n)
- Reduction of multiple scattering
- Low Z target!!!
 - Smaller multiple scattering
 - Larger difference between σ_{\parallel} and σ_{\perp}

	LH	Li	Be	Graphite
Nuclear collision length for ²¹ Ne, λ [cm]	34	20	7.1	7.3
Multiple scattering angle for $d=3\lambda$ [mrad]	0.43	0.83	1.05	1.47
Momentum change due to ionization loss, $\Delta p/p$ [%]	3.1	5.6	6.6	8.8
σ⊥ / σΙΙ	1.36	1.28	1.27	1.26

Beryllium target of 3λ length is chosen, (20 cm)

- Compromise between contractionary requirement
- Beta-function in the target center -80 cm
 - ◆ Beam rms angular spread 1.6 mrad (multiple scattering 0.9 mrad)
 - ♦ Beam rms beam size 1.3 mm

Particles Coming out of the Target

Collimator width -3 cm.

<u>Background</u>

- Bending field after the target removes major fraction of secondaries leaving only particles with the same momentum per unit charge
 - Major species left after collimator are: ⁴He – 34%, 19F – 29%, ²H – 12%

Mass and charge of ions passed through collimator

Rotation of Polarization

- Bending field is required to remove secondaries but it results in rotation of polarization relative to the beam direction
 - For chosen parameters spin precession results in rotation of about 180 deg.; *i.e.* it does not change the tensor polarization

Conclusions

- Experiments with polarized heavy ions open another view on the structure of the ions and their interactions
- We are looking into a possibility to carry out a demonstration experiment to validate the method

Backup Slides

Nuclear shapes and the corresponding electric quadrupole moments.

QGP Under Rotation

Nature, vol. 635, pages 67-72 (2024) STAR Collaboration

Fig. 1 | **Methods for determining the nuclear shape in low and high energies. a**, Cartoon of a well-deformed prolate-shaped nucleus. **b**, Quantum fluctuations over Euler angles for this nucleus and associated overall timescale. **c**, Quantum mechanical manifestation of the deformation in terms of the first rotational band of ²³⁸U. **d**, Aligning the two nuclei in the head-on body-body configuration (top) and tip-tip configuration (bottom). **e**, High-energy collision of two Lorentz-contracted nuclei and resulting 3D profile of the initially produced quark-gluon plasma (QGP), in which the arrows indicate the pressure gradients. **f**, The 3D profile of the QGP at the end of the hydrodynamic expansion before it freezes out into particles, in which the arrows indicate the velocities of fluid cells. **g**, Charged particle tracks measured in the detector. The timescales shown are in units of fm/c—the time for light to travel 1 femtometre. The body–body configuration has large eccentricity ε_2 and small gradient d_{\perp} , leading to large elliptic flow v_2 and smaller average transverse momentum [p_T] and vice versa for tip–tip configuration (see main text).

