

Net-proton high-order cumulants in event-by-event studies in high energy A+A collisions at NICA energies

Grigory Feofilov

St. Petersburg State University Laboratory of Ultra-High Energy Physics

LXXV International Conference "NUCLEUS-2025" Saint-Petersburg, Russia, 05.07.2025, 16:30-16:50

Talk layout

- 1. Some definitions
- 2. Hot topic: net-proton fluctuations
- 3. Can we do better with MPD at NICA?

Event-by-event fluctuations of conserved quantities

- Net electric charge Q,
- Net strangeness S,
- Net baryon number B,

...are sensitive to the degrees of freedom that are active in the system,

And the moments (Variance (σ^2), Skewness(S), Kurtosis(k)) of distributions of Q,S,B are predicted to be sensitive to the correlation length of hot dense matter created in the collisions [1], i.e. sensitive to the QCD critical endpoint of the first order phase transition between quark-gluon plasma and hadron gas

.

- Net proton number (as a proxy to net-baryon) : $N_{p-\bar{p}} = N_p N_{\bar{p}} = \Delta N_p$
- \triangleright We will use N below to represent the net-proton number $N_{p-\bar{p}}$ in one event

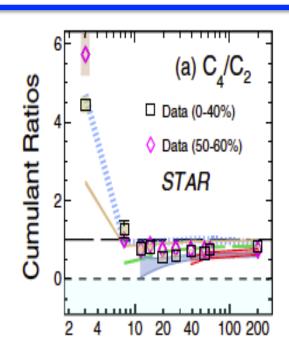
[1] M. A. Stephanov, Phys. Rev. Lett. 102, 032301 (2009).

Fluctuations of conserved quantities and susceptibilities

Fluctuations of conserved quantities (N or Q_i in this slide) relate directly to the susceptibilities χ_i , which are quantities that can be calculated for thermodynamic systems, e.g. in lattice QCD.

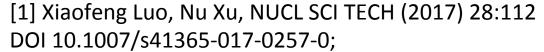
Susceptibilities are defined as derivatives of the pressure with respect to the chemical potential.

Deviations δQ_i are related to susceptibilities $\chi_n^{Q_i}$ by [1]:


$$\langle (\delta Q_i)^n \rangle = T^n \frac{\partial^n}{\partial \mu_i^n} \ln Z(T, \, \mu_i) = V T^3 \chi_n^{Q_i},$$

Here -- Q_i is a conserved charge of interest, T the temperature, μ_i the corresponding chemical potential and Z the partition function [1].

> ➤ Therefore the experimental values (in the Left) could be used to define thermodynamic model parameters (in the Right)


Hot topic! Proton and net-proton High-Order Cumulants and Susceptibilities

DEFINITIONS of central moments and cumulants [1]		
the proton multiplicity in a given event	N	
the average over all events	<>	
Mean:	$M = \langle N \rangle = C_1,$	
Deviation,	$\delta N = N - \langle N \rangle$	
Variance	$\sigma 2 = <(\delta N)^2 > = C_2,$	
skewness	S =< $(\delta N)^3 > /\sigma^3 =$ = $C_3/C_2^{3/2}$,	
kurtosis	$k = <(\delta N)^4 > /\sigma^4 - 3 =$ = C_4/C_2^2	

dependence of the ratios of cumulants C4/C2, for net proton (red circles) from 0%–40% and 50-60% Au + Au collisions at RHIC ([2]).

➤ Fluctuation of conserved quantities were predicted to be sensitive near CEP to the correlation length [3]

[2] B.E.Aboona et al. *STAR Collaboration), "Beam Energy Dependence of Fifth- a

Order Net-Proton Number Fluctuations in Au+Au Collisions at RHIC", Phys. Rev. Lett. 130,

082301,(2023) https://doi.org/10.1103/PhysRevLett.130.082301

[3] C. Athanasiou, K. Rajagopal, M. Stephanov, Phys. Rev. Lett. 102, 032301 (2009).doi:10.1103/

PhysRevD.82.074008

In 2021: Non-monotonic energy dependence of net-proton number fluctuations[1]

The first evidence of a nonmonotonic variation in kurtosis times variance of the net-proton number (proxy for net-baryon number) distribution as a function of Vs_{NN} with 3.1s significance, for central Au+A collisions measured using the STAR detector at RHIC [1]

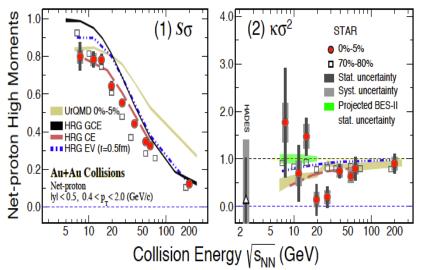
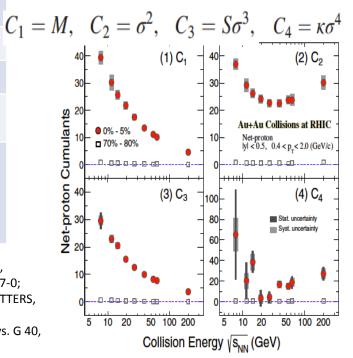


FIG. 4. So (1) and ko^2 (2) as a function of Vs_{NN} for net-proton distributions measured in Au+Au. Central (0-5%, filled circles), peripheral (70-80%, open squares) collisions 0.4 < pT (GeV/c) < 2.0 and jyj < 0.5 [1].

- Higher moments of distributions are more interesting due to their stronger dependence on the correlation length
- Centrality bin width correction (CBWC) is applied[3]
- [1] J. Adam et al. (STAR Collaboration), Phys. Rev. Lett. 126, 092301 (2021).
- [2] M. A. Stephanov, Phys. Rev. Lett. 102, 032301 (2009).
- [3] X. Luo, J. Xu, B. Mohanty, and N. Xu, J. Phys. G 40, 105104 (2013).

In 2021: Non-monotonic energy dependence of net-proton number (N) fluctuations[1]

DEFINITIONS of central moments and cumulants [1]


the proton multiplicity in a given event	N
the average over all events	<>
Mean:	$M = \langle N \rangle = C_1,$
Deviation,	$\delta N = N - \langle N \rangle$
Variance	$\sigma^2 = <(\delta N)^2 > = C_2,$
skewness	S =< $(\delta N)^3$ >/ σ^3 = = $C_3/C_2^{3/2}$,
kurtosis	$k = <(\delta N)^4 > /\sigma^4 - 3 =$ $= C_4 / C_2^2$

[1] Xiaofeng Luo, Nu Xu, NUCL SCI TECH (2017), 28:112, DOI 10.1007/s41365-017-0257-0;

[2] (STAR Collaboration), PHYSICAL REVIEW LETTERS, 126, 092301 (2021)

[3]] X. Luo, J. Xu, B. Mohanty, and N. Xu, J. Phys. G 40, 105104 (2013)

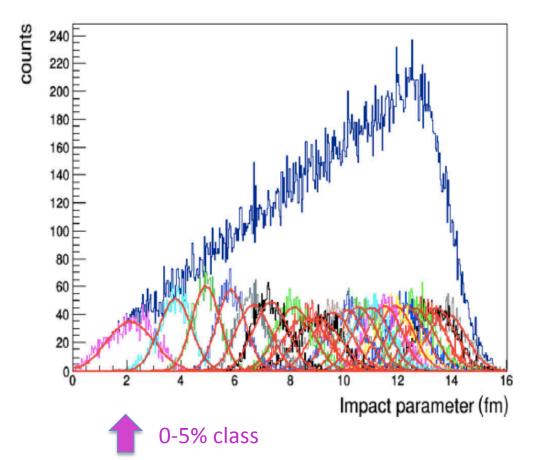
- FIG. 1. Net-proton number distributions for (0%–5% central) Au +Au collisions for nine Vs_{NN} values measured by STAR [2].
- FIG. 2. Cumulants (Cn) of the net-proton distributions for central (0%–5%) and peripheral (70%–80%) Au +Au collisions as a function of collision energy[2].
- Corrected for Centrality Bin Width Effect[3]
- Non-gaussian shape of net-baryon distribution is expected near the CEP (M.Stepanov - 2008)
- Non-zero C3 and C4 and non-gaussian shape here?

Problems of using $\delta N=N-\langle N\rangle$

skewness:
$$S = \langle (\delta N)^2 \rangle$$

$$kurtosis$$

$$k = \langle (\delta N)^3 \rangle / \sigma^3 = C_3 / C_2^{3/2}$$


$$k = \langle (\delta N)^4 \rangle / \sigma^4 - 3$$

$$= C_4 / C_2^2$$

- $\delta N = N \langle N \rangle$ brings an added weight to the outliers
- The 2^{nd} , 3^{rd} or the 4^{th} power of $<\delta N>$ gives more weight
- ➤ Volume (V) dependence of baryon number susceptibilities.
- V is also a strongly fluctuating quantity
- "Therefore, we conclude that fluctuations of conserved charges in heavy ion collisions can provide robust probes of the chiral phase boundary if a good control of volume fluctuations can be achieved." (see in [1]).

[1] V.Skokov, B. Friman and K. Redlich, Volume fluctuations and higher order cumulants of the net baryon number, arXiv:1205.4756;

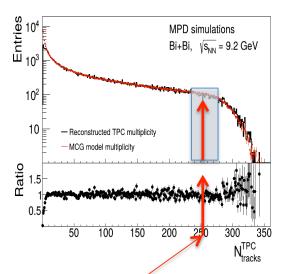
Problems of using δN=N-<N>

➤ V is a strongly fluctuating quantity, see , for example, impact parameter distribution for 0-5% class in MC simulations for Au+Au collisions at Vs_{NN} =7.7 GeV (Fig.44 from ref.[1]).

Event-by-event

[1]The MPD Collaboration, Status and initial physics performation of the MBDt experiment at NICA,

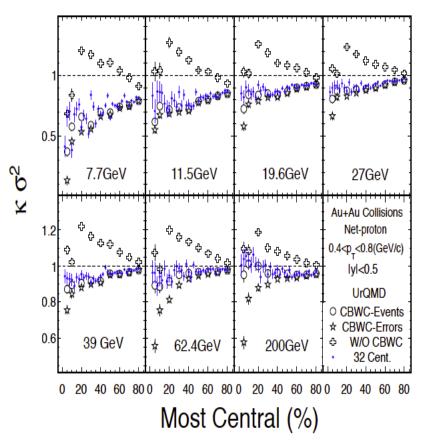
Eur. Phys. J. A (2022) 58:140, https://doi.org/10.1140/epja/s10050_022_00750_6 centrality class selected for analysis


Centrality Bin Width Correction procedure (CBWC) [1]

$$\sigma = \frac{\sum_{r} n_{r} \sigma_{r}}{\sum_{r} n_{r}} = \sum_{r} \omega_{r} \sigma_{r}$$

$$S = \frac{\sum_{r} n_{r} S_{r}}{\sum_{r} n_{r}} = \sum_{r} \omega_{r} S_{r}$$

$$\kappa = \frac{\sum_{r} n_{r} \kappa_{r}}{\sum_{r} n_{r}} = \sum_{r} \omega_{r} \kappa_{r}$$


Selection **of very narrow** multiplicity class from multiplicity distribution of charged particles measured in some pseudorapidity interval

Some rth multiplicity bin in the selected multiplicity class

Here n_r -- is the number of events in r^{th} multiplicity, σ_r , S_r and k_r -- the standard deviation, skewness and kurtosis of particle number distributions at r^{th} multiplicity, $\omega_r = n_r/\Sigma n_r$ -- the corresponding weight for the r^{th} multiplicity.

Some examples of CBWC results in UrQMD model obtained in [1]

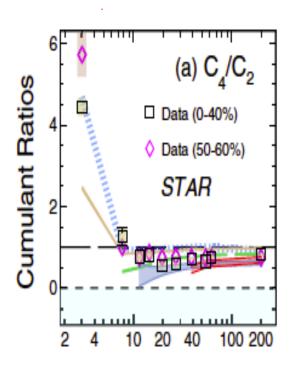
- FIG. 3. The centrality dependence of the moments products ($k\sigma^2$) of net-proton multiplicity distributions for Au+Au collisions at vs_{NN} =7.7, 11.5, 19.6, 27, 39, 62.4, 200GeV in UrQMD model. See in [1].
- > CBWC works and it is more important for the central collisions
- However, it is not sufficient... -->

Hot topic:

Proton and net-proton High-Order Cumulants

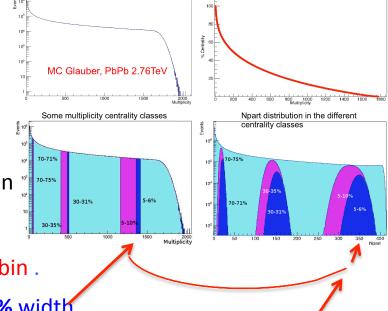
DEFINITIONS of central moments and cumulants [1]	
the proton multiplicity in a given event	N
the average over all events	<>
Mean:	$M = \langle N \rangle = C_1,$
Deviation,	$\delta N = N - \langle N \rangle$
Variance	$\sigma^2 = <(\delta N)^2 > = C_2,$
skewness	$S = <(\delta N)^3 > /\sigma^3 = $ = $C_3/C_2^{3/2}$,
kurtosis	$k = <(\delta N)^4 > /\sigma^4 - 3 =$ = C_4/C_2^2

[1] Xiaofeng Luo, Nu Xu, NUCL SCI TECH (2017) 28:112 DOI 10.1007/s41365-017-0257-0;


[2] C. Athanasiou, K. Rajagopal, M. Stephanov, Phys. Rev. Lett. 102, 032301 (2009).

doi:10.1103/PhysRevD.82.074008

[3] J. Adam et al. (STAR Collaboration), Phys. Rev. Lett. 126, 092301 (2021)



- ...so, where is the CEP ---?
- > Can we do better with MPD at NICA?

Problems of centrality class selection

MC Glauber calculations Pb+Pb 2.76 TeV [1] $\chi_1^B = \frac{1}{VT^3} \langle N_B \rangle ,$

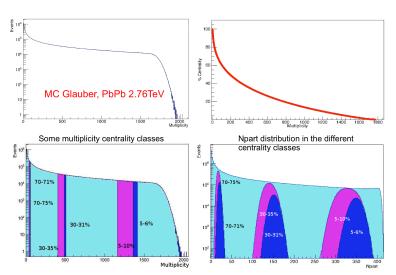
$$\begin{split} \chi_{1}^{-} &= \frac{1}{VT^{3}} \left\langle (\delta N_{B})^{2} \right\rangle , \\ \chi_{2}^{B} &= \frac{1}{VT^{3}} \left\langle (\delta N_{B})^{2} \right\rangle , \\ \chi_{3}^{B} &= \frac{1}{VT^{3}} \left\langle (\delta N_{B})^{3} \right\rangle , \\ \chi_{4}^{B} &= \frac{1}{VT^{3}} \left(\left\langle (\delta N_{B})^{4} \right\rangle - 3 \left\langle (\delta N_{B})^{2} \right\rangle^{2} \right) , \end{split}$$

- For the class of selected events, the mean volume V and temperature T are supposed to be fixed during the CBWC procedure with rth multiplicity bin.
- But narrow class in multiplicity, e.g. of 1% width,

does not mean narrow distribution neither in the impact parameter b nor in Npart[1]

- So, the volume V is not fixed in the event-by-event study with CBWC.
- > A narrow rth multiplicity bin still contains trivial volume fluctuations of N_B.
- Event N_{part} should be estimated with the highest accuracy.

See also Talk by Grigory Feofilov 05/07/2025, 16:30, Section 4


Problems of centrality class selection

Narrow class in multiplicity, e.g. of 1% width, does not mean narrow distribution neither in the impact parameter b nor in Npart[1]

- ➤ Event N_{part} should be estimated with the highest accuracy.
- Work is in progress for the event impact parameter and relevant centrality determination in nucleus-nucleus collisions in experiments at the NICA

MC Glauber calculations Pb+Pb 2.76 TeV [1]

Talk by Кирилл Галактионов (СПбГУ) 01/07/2025, 18:00 , Section 4

Talk by Dim Idrisov (INR RAS) 01/07/2025, 18:40, Section 4

Talk by Svetlana Simak (SPbSU) 03/07/2025, 11:23, Section 4

Proposal: New Bin Width Correction

procedure (CBWC -V)

Ratios of cumulants $C_2/C_1 = \sigma^2/M$, $C_3/C_2 = S\sigma$, and $C_4/C_2 = \kappa\sigma^2$ were used to reduce the volume dependence.

However, the average values of σ , S and k are calculated assuming the fixed value of volume V in all events!

We propose to use the reduced cumulants, similar to [1], but on the event-by-event basis, following the new CBWC-V procedure with V^r defined in each rth multiplicity bin via <N^r_{part}>:

$$M = \langle N \rangle = C_1,$$

$$\delta N = N - \langle N \rangle$$

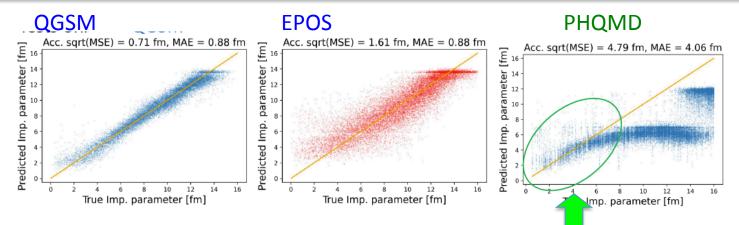
$$\sigma^2 = \langle (\delta N)^2 \rangle = C_2,$$

$$S = \langle (\delta N)^3 \rangle / \sigma^3 =$$

$$= C_3 / C_2^{3/2},$$

$$k = <(\delta N)^4 > /\sigma^4 - 3 = = C_4/C_2^2$$

c1=M/V^r =
$$<$$
N^r/V^r>,
 δ N^r=N^r/V^r - $<$ N^r/V^r>
c2= σ_r^2 = $<$ (δ N^r)²>,
S_r = $<$ (δ N^r)³>/ σ_r^3 ,


$$k_r = <(\delta N^r)^4 > /\sigma_r^4 - 3$$

- We assume that for any rth multiplicity bin the relevant mean volume V^r is proportional to the number of nucleons-participants:
 V^r = V₀N^r_{part}
- Here a volume factor $V_0 = 2.83 \text{ fm}^3$ (see in [1]).
- Thus we obtain the reduced deviation

 $\delta N^r = N^r/V^r - \langle N^r/V^r \rangle$ for the relevant distribution of conserved quantity N^r

[1] V. Skokov, B. Friman and K. Redlich, "Volume fluctuations and higher order cumulants of the net baryon number". arXiv:1205.4756v2

"Deep reconstruction neural network" trained on mixed data by K. Galaktionov [1]

- "Deep reconstruction neural network" trained on mixed data (QGSM and EPOS) was shown
 [1] -- to be capable to select some class of central events (CCE) in PHQMD
- The events from this class could be used in further event-by-event analysis.
- ➤ Event-by-event number of spectator nucleons (N_s) from the energy measured in a calorimeter, could bring us the estimates of the values of N^r_{part} for each event and the relevant errors for N^r_{part} value by using Bayes' formula as described in [2]
- \triangleright Volume V^r is estimated in each event : V^r = V₀N^r_{part} /2
- COMMENT GF: Many thanks to Evgeniy Anronov who pointed at the lost ½!
- (\rightarrow Then <N^r/V^r> could be calculated for the CCE selected and,

finally: $\delta N^r = N^r/V^r - \langle N^r/V^r \rangle$ for each event

- [1] K. Galaktionov -- talk at NUCLEUS-2025 conference
- [2] F.F. Valiev , V.V. Vechernin, G.A. Feofilov, Estimation of the Accuracy of Determining the Number of Spectator Nucleons from the Energy Measured in a Calorimeter in A + A Collisions", Bull.Russ.Acad.Sci.Phys. 88 (2024) 8, 1312-1318

Relative Accuracy of Determining the Number of Spectator Nucleons[1]

Example[1]

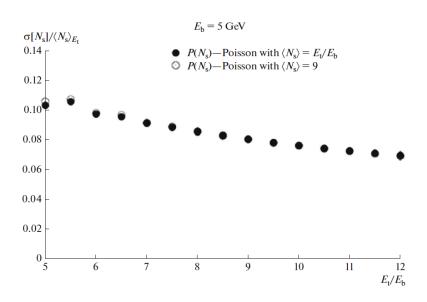


Fig. 5. Relative error in determining N_s at this E_t in the case where $P(N_s)$ is a Poisson distribution with mathematical expectations $N_s = E_t/E_b$ (filled points) and $N_s = 9$ (open points) at the measured energy $E_t/E_b < 12$.

[1] F.F. Valiev , V.V. Vechernin, G.A. Feofilov, Estimation of the Accuracy of Determining the Number of Spectator Nucleons from the Energy Measured in a Calorimeter in A + A Collisions", Bull.Russ.Acad.Sci.Phys. 88 (2024) 8, 1312-1318

Relative Accuracy of Determining the Number of Spectator Nucleons[1]

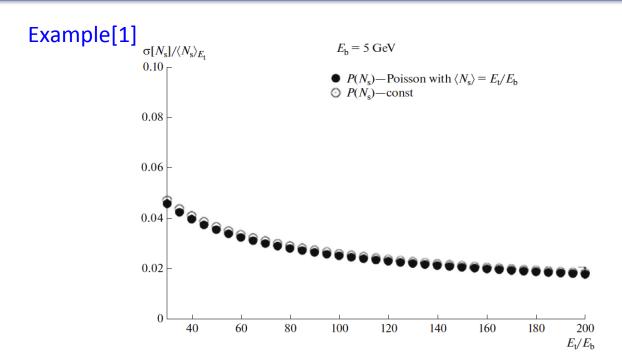


Fig. 6. Relative error in determining N_s at this E_t in the case where $P(N_s)$ is a Poisson distribution with mathematical expectation $N_s = E_t/E_b$ (filled points) and a uniform distribution (open points) at the measured energy $E_t/E_b > 30$.

[1] F.F. Valiev , V.V. Vechernin, G.A. Feofilov, Estimation of the Accuracy of Determining the Number of Spectator Nucleons from the Energy Measured in a Calorimeter in A + A Collisions", Bull.Russ.Acad.Sci.Phys. 88 (2024) 8, 1312-1318

Conclusions

- ➤ Class of central events (CCE) is selected using ML approach[1], and then it allows to proceed
- ➤ Values of event N^r_{part} should be estimated event-by-event with the highest accuracy.
- $V^r = V_0 N_{part}^r / 2$ are defined event-by-event
- Nr/Vr> could be calculated for the class of events selected
- \triangleright Reduced deviations: $\delta N^r = N^r/V^r \langle N^r/V^r \rangle$, are calculated for each event,

and, finally, we may obtain:

$$\begin{split} \sigma^2 = & <\!\! (\delta N^r)^2 > \\ S = & <\!\! (\delta N^r)^3 > \!\! / \sigma^3 \\ k = & <\!\! (\delta N^r)^4 > \!\! / \sigma^4 - 3 \end{split}$$

[1] K. Galaktionov -- talk at NUCLEUS-2025 conference

[2] F.F. Valiev, V.V. Vechernin, G.A. Feofilov, Estimation of the Accuracy of Determining the Number of Spectator Nucleons from the Energy Measured in a Calorimeter in A + A Collisions", Bull.Russ.Acad.Sci.Phys. 88 (2024) 8, 1312-1318

Thank you for your attention!

Cumulants

and correlation length ξ of hot dense matter

- \triangleright Correlation length ξ of hot dense matter[1]
 - --- the cubic central moment of multiplicity $<(\delta N)^3>\sim \xi^{4.5}$
 - --- the quartic cumulant $<(\delta N)^4>\sim \xi^7$
- Correlation length ξ will diverge (reach the maximum value) at the critical point[2]

- [1] M. A. Stephanov, Phys. Rev. Lett. 102, 032301 (2009).
- {2} M. A. Stephanov, K. Rajagopal and E. V. Shuryak, Phys.Rev. D 60, 114028 (1999) [arXiv:hep-ph/9903292].

Hot topic! Proton and net-proton High-Order **Cumulants and Susceptibilities**

DEFINITIONS of central moments and cumulants [1] the proton N multiplicity in a given event < > the average over all events $M = < N > = C_1$ Mean: Deviation, $\delta N = N - \langle N \rangle$ $\sigma^2 = <(\delta N)^2 > = C_2$ Variance skewness $S = <(\delta N)^3 > /\sigma^3 =$ $=C_3/C_2^{3/2}$, $K\sigma^2 = \chi_4/\chi_2$

 $k = <(\delta N)^4 > /\sigma^4 - 3 =$

 $=C_4/C_2^2$

kurtosis

$$\chi_1^B = \frac{1}{VT^3} \langle N_B \rangle ,$$

$$\chi_2^B = \frac{1}{VT^3} \left\langle (\delta N_B)^2 \right\rangle \,,$$

$$\chi_3^B = \frac{1}{VT^3} \left\langle (\delta N_B)^3 \right\rangle \,,$$

$$\chi_4^B = \frac{1}{VT^3} \left(\left\langle (\delta N_B)^4 \right\rangle - 3 \left\langle (\delta N_B)^2 \right\rangle^2 \right),$$

Ratious of cumulants and susceptibility ratios:

$$\sigma^2/M = \chi_2/\chi_1, S\sigma = \chi_3/\chi_2,$$

$$\kappa\sigma^2 = \chi_1/\chi_2$$

>
$$\delta N_B = N_B - \langle N_B \rangle$$
 can be measured event by event

 $\rightarrow \langle \cdots \rangle$ -- the ensemble average

Ratios of the cumulants are used to reduce volume dependence:

$$C_2/C_1 = \sigma^2/M$$
, C_3/C_2 .=S σ , and $C_4/C_2 = \kappa \sigma^2$.

^{[1] -}Xiaofeng Luo (STAR Collab.), Probing the QCD Critical Point with Higher Moments of Net-proton Multiplicity Distributions, arXiv: 1106.2926v1, J. Phys.: Conf. Ser. 316, 012003 (2011),