LXXV International conference "NUCLEUS – 2025. Nuclear physics and elementary particle physics. Nuclear physics technologies."

Production of Λ hyperons in 4.0 and 4.5 AGeV carbon-nucleus interactions at the Nuclotron

Speaker: Ksenia Alishina Scientific adviser: Yu. Stepanenko Scientific supervisor: M. Zavertyaev

02.07.2025

Saint-Petersburg University

St. Petersburg

Acceptance evaluation procedure (DCM - QGSM)

Kinematic measuring range (4, 4.5 AGeV):

 $0.1 < p_T < 1.05 \text{ GeV/c}$ $1.2 < y_{lab} < 2.1$

Divide the kinematic measuring range by y, p_T into (8×8) cells in the MC simulation.

To get the number of events generated by the MC.

In each cells the invariant mass distribution fit

1.33< y_{lab} < 1.45, 0.2< p_T< 0.3

Evaluation of the precision of the acceptance

Pseudo-experiment

Gaussing smearing. The **"new"** histogram was fit an the new signal was evaluated. **1000** times Procedure was repeated.

Red Line – Fit function $Gauss(< N^{\Lambda}_{rec_{MC}} >, \sigma_{N^{\Lambda}_{rec_{MC}}})$

Each event is weighted with $\varepsilon_i = \langle N_{rec_{MC}}^{\Lambda} \rangle_i / N_{gen_i}^{\Lambda}$ is evaluated number of Λ , $N_{gen_i}^{\Lambda}$ is the number of Λ generated; $\Delta \varepsilon_i = \sigma_{N_{rec_{MC}}^{\Lambda}} / N_{gen_i}^{\Lambda}$ is evaluated error.

Spectrometer acceptance $(\epsilon_i \pm \Delta \epsilon_i)$ for Λ in (y, p_T) cells

C+C, E_{kin} = 4 AGeV

Mass distribution of the Λ (BM@N DATA)

Procedure in DATA C+A \rightarrow X

- Split (y, pT) area in small cells for MC/DATA (8x8);
- 2) To each event assigned the weight ε_{acc_i} ;
- 3) Sum the cells by $\sum_{ij} y_{ij}$ and by $\sum_{ij} pT_{ij}$

0.1 < p_T <1.05 and 1.2 < y_{lab} < 2.1

Signal = hist – Background in 1075 - 1250 MeV/c²;

The violet lines represent the result of the fit by the sum of the threshold and exponential functions;

Uncertainties from signal variation (BM@N DATA)

Red Line – Fit function Gauss ($< N_{rec_{DATA}}^{\Lambda} >, \sigma_{N_{rec_{DATA}}}^{\Lambda}$

0.1 < p_T <1.05 and 1.2 < y_{lab} < 2.1

 $\Delta \sigma_{\Lambda} = \sigma_{N_{rec\,DATA}} / (\varepsilon_{trig} \times \varepsilon_{pileup} \times L)$

 $\Delta Y_{\text{stat}\Lambda} = \Delta \sigma_{\Lambda} / \sigma_{inel}$

Cross sections $\sigma_{\Lambda}(y/p_T)$ of the Λ and yields (BM@N)

The inclusive cross section σ_{Λ} and Y_{Λ} of Λ hyperon in C+A interactions are calculated in bins of (y, p_T) according to the formula:

weighted signal

$$\begin{aligned} \sigma_{\Lambda}(p_{T}) &= \left[\sum_{y} N_{rec}^{\Lambda}(y, p_{T}) / \varepsilon_{rec}(y, p_{T})\right] / \left[\varepsilon_{trig} \cdot \varepsilon_{pileup} \cdot L\right] \\ \sigma_{\Lambda}(y) &= \left[\sum_{p_{T}} N_{rec}^{\Lambda}(y, p_{T}) / \varepsilon_{rec}(y, p_{T})\right] / \left[\varepsilon_{trig} \cdot \varepsilon_{pileup} \cdot L\right] \\ Y_{\Lambda}(y - p_{T}) &= \sigma_{\Lambda}(y - p_{T}) / \sigma_{inel} \end{aligned}$$

L is the luminosity, N_{rec}^{Λ} is the number of recontacted Λ -hyperons,

 \mathcal{E}_{rec} is the combined efficiency of the Λ - hyperon reconstruction,

 \mathcal{E}_{trig} is the trigger efficiency, \mathcal{E}_{pileup} is the suppression factors of reconstructed events.

σinel is the cross section for minimum bias inelastic C+A interactions (DCM-QGSM model vs Streamer Chamber).

Yield RESULTS (Preliminary)

Target	Energy, AGeV	$Y_{\Lambda} \pm \Delta Y_{\text{stat}\Lambda} \pm \Delta Y_{\Lambda_{sys}}$	Energy, AGeV	$Y_{\Lambda} \pm \Delta Y_{\text{stat}\Lambda} \pm \Delta Y_{\Lambda_{sys}}$			
0.1 < p_T < 1.05 and 1.2 < y_{lab} < 2.1 (BM@N acceptance)							
C + C		0.023 ± 0.003 ± 0.005		0.027 ± 0.005 ± 0.006			
C + Al	4.0	0.032 ± 0.008 ± 0.006		0.025 ± 0.006 ± 0.005			
C + Cu	4.0	0.030 ± 0.003 ± 0.005	4.5	0.037 ± 0.004 ± 0.006			
C + Pb		-		0.033 ± 0.010 ± 0.010			

Systematic evaluation: Cut variation

An approach in the estimation of systematic uncertainties related to the variation of selection criteria for events with Λ -hyperons.

The selection criteria based only on two parameters path, dca.

Nominal values:

Calculation of systematic uncertainties yields of the Λ

$$1 \qquad \Delta Y_{\Lambda_{sys_pseudo_exp}}^2 = Y_{\Lambda}^2 (\sigma_{N_{rec}DATA}^2 / < N_{rec_DATA}^\Lambda >^2 + \sigma_{N_{rec}MC}^2 / < N_{rec_MC}^\Lambda >^2);$$

2
$$\Delta Y_{\Lambda_{sys_{cut}var}} = 0.004 - from the variation of the Λ -hyperon selection criteria;$$

3
$$\Delta Y_{\Lambda_{sys}} = \sqrt{\Delta Y_{\Lambda_{sys_pseudo_exp}}^2 + \Delta Y_{\Lambda_{sys_{cut_var}}}^2} - \text{total systematic uncertainty}$$

Rapidity (y) spectra of Λ hyperons vs models predictions (Preliminary)

11

Rapidity (y) spectra of Λ hyperons vs models predictions (Preliminary)

Invariant pT spectra of Λ hyperons vs models predictions (Preliminary)

The measured spectra of the Λ yields in p_T are parameterized by the formula:

$$\frac{1}{p_T} \frac{d^2 N}{dp_T} \frac{dy}{dy} = N \cdot \exp(-(m_T - m_A)/T_0)$$

The transverse mass $m_T=\sqrt{m_A^2+p_T^2}$,

The N normalization,

1

The inverse slope parameter T_0 are free parameters of the fit;

Invariant p_T spectra of Λ hyperons vs models predictions (Preliminary)

SLOPE RESULTS (Preliminary)

	T _o , MeV,	T _o , MeV,	T _o MeV,	T _o MeV,
4.0 AUEV	C+C	C+Al	C+Cu	C+Pb
BM@N	89 ± 9 ± 17	99 ± 10 ± 16	108 ± 11 ± 14	Low statistic
DCM - SMM	109 ± 1	117 ± 3	117 ± 3	123 ± 4
UrQMD	114 ± 7	128 ± 7	137± 6	135 ± 8
PHSD	89 ± 3	105 ± 3	111 ± 7	102 ± 4

	T _o , MeV,			
4.5 AGEV	C+C	C+Al	C+Cu	C+Pb
BM@N	107 ± 17 ± 17	86 ± 8 ± 17	91 ± 8 ± 15	99 ± 17 ± 20
DCM - SMM	118 ± 2	126 ± 4	129 ± 2	130 ± 1
UrQMD	125 ± 4	132 ± 7	138 ± 8	143 ± 6
PHSD	109 ± 5	113 ± 5	115 ± 5	113 ± 5

Extrapolation in full kinematic range

Energy dependence of Λ yields measured in C+C interactions

BM@N, **4** AGeV: (5.7±**0.7**±**1.0**)•10⁻²

Propane Chamber, 3.36 AGeV: (2.89±0.72) •10⁻²

The predictions of the **DCM-SMM**, **UrQMD** and **PHSD** models

HADES, 2 AGeV: 0.0092 \pm 0.0012 \pm 0.0034 \\ 0.0097 \pm 0.0012 \pm 0.0017

unpublished data

Parameterisation for proton-proton collisions (pp) scaled to the C + C system

The parameterisation was based on the Lund-String-Model (LSM) from **[1]**:

 $\langle n \rangle = a(x-1)^b(x^{-c})$

where $x = s/s_0$ is the square of the center-of-mass energy, s_0 is the square of the production threshold, and **a**, **b**, **c** are the fit parameters [2].

 $N_{part} = 9 (DCM - SMM);$

Dashed red lines indicate the uncertainties in the predicted excitation function (about 25%).

W. Cassing and E. L. Bratkovskaya, "Hadronic and electromagnetic probes of hot and dense nuclear matter," Phys. Rep. 308, 65 (1999).
V. Kolesnikov at al, A New Review of Excitation Functions of Hadron Production in pp Collisions in the NICA Energy Range, PEPAN Letters (2020), Vol. 17, N°2, pp. 388 142-153.

Energy dependence of Λ yields measured in C+Al, C+Cu, C+Pb interactions

Ratios of the *I* hyperon yields to the number of nucleonsparticipants measured in BM@N carbon-nucleus interactions at 4.0 AGeV (left) and 4.5 AGeV (right)

The predictions of the **DCM-SMM**, **UrQMD** and **PHSD** models

A comparison of the normalized Λ yields as a function of collision energy $\sqrt{s_{NN}}$

Summary

Cross sections(σ_A), yields (Y_A), slope T₀ were measured and compare prediction model

Summary

In the energy range 4 - 4.5 AGeV this difference is not significant and the temperature values are close within the error.

