Probing J/ψ Production Mechanisms in Proton–Proton Collisions at SPD/NICA Energies

SHUBHAM SHARMA

In collaboration with Dr. Alexey Aparin

Moscow Institute of Physics and Technology, Russia

Nucleus 2025

Name: Shubham Sharma

o PhD: Completed from NIT Jalandhar, India

Background: Tomography of hadrons using light-front dynamics

o Current: Young Scientist at MIPT, Russia

For Queries & Collaboration:

s.sharma.hep@gmail.com www.linkedin.com/in/ssharmahep

Motivation

 J/ψ Production Across Experiments

Production Mechanisms of J/ψ

Theoretical Models

Figure: Charmonium, open charm, and prompt photons as probes to access gluon content of proton in polarized collisions at NICA SPD

https://arxiv.org/pdf/2011.15005

Shubham Sharma J/ψ Production at NICA 3 July 2025 4/20

Behavior of the cross sections for the inclusive production of J/ψ , $\psi(2S)$, open charm, and high- p_T prompt photons in p-p collisions as a function of \sqrt{s} (CEM-NLO model)

- ${\rm J}/\psi$ provides a clean experimental signature of dimuon decay but but Feed-down complicates its analysis.
- gluon fusion to open-charm mesons has highest statistics but also very high background.
- quark-gluon to prompt-photons is the cleanest channel for interpretation but Backgrounds limit its studies at low p_T.

https://arxiv.org/pdf/2011.15005

Shubham Sharma J/ψ Production at NICA 3 July 2025 5/20

Motivation

 J/ψ Production Across Experiments

Production Mechanisms of J/ψ

Theoretical Models

J/ψ Production Across Colliders

Collision Systems

- e^+e^- (Belle, BaBar)
- e^-p (HERA, EIC)
- pp (LHC, RHIC, SPD/NICA)
- pA, AA (LHC, RHIC)

Physics Focus

- Test NRQCD, color mechanisms
- Probe gluon content in ep
- Study TMDs, saturation in pp
- Nuclear modification, QGP

My focus: J/ψ in pp collisions at SPD/NICA energy range

https://arxiv.org/abs/1506.03981 https://arxiv.org/abs/1212.1701

Main present and future gluon-spin-physics experiments

main present and future gluon-spin-physics experiments						
Experimental	SPD	RHIC [45]	EIC [36]	AFTER	LHCspin	
facility	@NICA [41]			@LHC [34]	[35]	
Scientific center	JINR	BNL	BNL	CERN	CERN	
Operation mode	collider	collider	collider	fixed	fixed	
				target	target	
Colliding particles	p^{\uparrow} - p^{\uparrow}	p^{\uparrow} - p^{\uparrow}	e^{\uparrow} - p^{\uparrow} , d^{\uparrow} , 3 He $^{\uparrow}$	p - p^{\uparrow} , d^{\uparrow}	p- p [†]	
& polarization	d^{\uparrow} - d^{\uparrow}					
	p^{\uparrow} - d , p - d^{\uparrow}					
Center-of-mass	≤27 (<i>p</i> - <i>p</i>)	63, 200,	20-140 (ep)	115	115	
energy $\sqrt{s_{NN}}$, GeV	≤13.5 (d-d)	500				
	≤19 (p-d)					
Max. luminosity,	~1 (p-p)	2	1000	up to	4.7	
$10^{32}~{\rm cm^{-2}~s^{-1}}$	~0.1 (d-d)			~10 (p-p)		
Physics run	>2025	running	>2030	>2025	>2025	

https://arxiv.org/abs/2011.15005

Motivation

 J/ψ Production Across Experiments

Production Mechanisms of J/ψ

Theoretical Models

Mechanisms of J/ψ Production

- Prompt Production: From direct partonic interactions.
 - \circ Contributing subprocesses: $g + g \rightarrow J/\psi$, $g + g \rightarrow J/\psi + g$
 - Involving intermediate color-singlet or color-octet $c\bar{c}$ states:
 - Singlet: $g^* + g^* \rightarrow Q\bar{Q}[^3S_1^{(1)}] + g$ ○ Octet: $g^* + g^* \rightarrow Q\bar{Q}[^1S_0^{(8)}, ^3S_1^{(8)}, ^3P_I^{(8)}]$
- Feed-down Production: From decays of higher charmonium states.
 - Examples: $\psi(2S) \rightarrow J/\psi + \pi\pi$, $\chi_{cJ} \rightarrow J/\psi + \gamma$
 - These originate from channels like:

$$\circ g^* + g^* \to Q\bar{Q}[{}^3P_J^{(1)}, {}^3S_1^{(8)}]$$

- o Spin correlations and decay kinematics are modeled explicitly.
- Non-prompt Production: From decays of long-lived B-hadrons.

Focus of this work: Prompt production via $g+g \to J/\psi$ or $J/\psi+g$ at $\sqrt{s}=27$ GeV.

A. V. Lipatov et al. 2020

Motivation

 J/ψ Production Across Experiments

Production Mechanisms of J/ψ

Theoretical Models

Colour Singlet Model (CSM)

- Assumes that the $Q\bar{Q}$ pair is produced directly in a color-singlet state with the same quantum numbers as the physical quarkonium.
- The production amplitude includes the perturbative partonic cross section and the non-relativistic wavefunction at the origin.

$$d\sigma[\mathcal{Q}] = \int d\xi_i \, d\xi_j \, f_i(\xi_i) \, f_j(\xi_j) \, d\hat{\sigma}_{i+j\to\mathcal{Q}+X} \, |R(0)|^2$$

- Applicable to S-wave states like J/ψ , $\psi(2S)$, $\Upsilon(1S)$
- $\circ |R(0)|^2$ is the radial wavefunction at the origin (non-perturbative)

Baier and Rückl 1983

Shubham Sharma J/ψ Production at NICA 3 July 2025 12/20

Colour Evaporation Model (CEM)

- Treats the $Q\bar{Q}$ pair as evolving into quarkonium if its invariant mass M lies below the open-flavor threshold ($2M_D$ for charm).
- The probability to form a specific quarkonium state is given by a universal factor $F_{\mathcal{Q}}$.

$$\frac{d\sigma[Q]}{dP_Q} = F_Q \int_{M_Q}^{2M_H} dM \, \frac{d\sigma_{Q\bar{Q}}(M, P_Q)}{dM \, dP_Q}$$

- \circ No need to specify quantum numbers of Qar Q
- $\circ \textit{ Works well for total cross sections, but lacks predictive power in } p_T \textit{ or } y \textit{ distributions}$

improved by Ma and Vogt 2016

Shubham Sharma J/ψ Production at NICA 3 July 2025 13/20

Non-Relativistic QCD (NRQCD)

- Factorizes the production into:
 - ► Short-distance partonic cross sections
 - ► Long-distance matrix elements (LDMEs)
- Allows $Q\bar{Q}$ to be produced in color-octet or color-singlet states.

$$d\sigma[\mathcal{Q}] = \sum_{n} \int d\xi_{i} \, d\xi_{j} \, f_{i}(\xi_{i}) \, f_{j}(\xi_{j}) \, d\hat{\sigma}_{i+j \to \mathcal{Q}\bar{\mathcal{Q}}[n]+X} \, \langle \mathcal{O}_{\mathcal{Q}}[n] \rangle$$

- \circ Sum over all allowed Qar Q quantum states n
- $\circ \langle \mathcal{O}_{\mathcal{Q}}[\mathsf{n}]
 angle$ are non-perturbative, fit from data
- Color-Octet contributions help explain high-p_T data

Bodwin et al. 1997

Summary: Theoretical Models of Quarkonium Production

Aspect	CSM	CEM	NRQCD
Color State	Singlet only	All (color summed)	Singlet + Octet
p_T Spectrum	Poor at high p_T	No structure	Better high p_T match
Quantum Numbers	Explicit	Ignored	Controlled via LDMEs
Factorization	Simple	No	Yes (QCD-based)
Status	Oldest model	Phenomenological	Most complete

Fragmentation mechanism is also possible but subdominant at SPD energies.

Motivation

 J/ψ Production Across Experiments

Production Mechanisms of J/4

Theoretical Models

Prompt J/ψ yield as measured by LHCb at $\sqrt{s}=7$ TeV compared to different theory predictions referred to as prompt NLO NRQCD, Direct NLO CS, Direct NNLO CS and Prompt NLO CEM *Eur. Phys. J. C* (2016) 76:107

Prompt J/ψ yield as measured by PEGASUS at $\sqrt{s}=27$ GeV

Shubham Sharma J/ ψ Production at NICA 3 July 2025 17/20

Thank, you!