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Introduction

• Consider a series of detectors measuring the coordinates of a track.
Measurement of only one coordinate is considered here.
No pileup, 100% efficiency ⇒ one hit per detecting layer.
No magnetic field.
No reference detectors.
True track coordinates and inclination angles are unknown. ⇒

It is necessary to obtain measurement errors from measurements with unknown errors.

• The assumption of identical layer resolu-
tion, only the proportionality coefficient is
needed:
[G. Charpak, et al., NIM 167(1979)455],
[F. Piuz, et al., NIM 196(1982)451],
[A. Korytov, et al, NIM A 338(1994)375],
and many others. Rz =

z1+z3
2

− z2 + misaligment ⇒

fwhm of residuals is 2.36σ
√

3/2 [F. Piuz et al, 1982].

The result is not the resolution of any particular layer,
nor is it an exact average value,
but a value that doesn’t have a clearly defined meaning.
This actually prevents

• a more detailed study of the detectors and
• a more accurate analysis of their data.
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Introduction (2)
• Estimation of variances “in a linear model” [R. Frühwirth, NIM A243(1986)173].

Measurement errors are allowed to be unequal.
The details of the derivation of the key formula are not clear to me, but they certainly
differ from my approach.
The final key formula when applied to straight trajectories corresponds to a special
case of my formula (obtained later; I consider only the case of straight trajectories).
Limit: no less than 5 layers needed in the case of straight tracks.
However, there are many experiments with fewer layers including one planned at PNPI:
[A.A. Vorobyev, Phys. Part. Nucl. Lett., 16 (2019) 524].
Currently 4 layers for each coordinate; exact knowledge of resolution is needed.

• The method of geometric mean: many contraversial claims.
[R.K. Carnegie et al, NIM A 538(2005)372]:

”a better estimate of the true resolution” (than inclusive and exclusive).
[D.C. Arogancia et al, NIM A 602(2009)403]:

“the true spatial resolution”.
as if even when the resolutions of layers are unequal (spoiler: no!)

and regardless of the number of layers (no Frühwirth’s limit).
MC tests in Ref. [T. Alexopoulos et al., JINST, 9 (2014) P01003]:
“The geometric mean method produces accurate results when the test and reference
detectors have the same characteristics.”

• Claim of reconstructing 4 resolutions:
J. Bortfeldt et al., IEEE Trans. Nucl. Sci. 59 (2012) 1252.
J. Bortfeldt, Springer Theses, 2015;
Not reproduced.
Also contradicts to Frühwirth’s limit.
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Main notations

Example of 4-layer detector
(like Cathode Strip Chamber)

−1−2 0 1
1 2 3 4

2

41,2,3l l1,2,3,4 4

1,2l

4

4

zzzzz

(   )z
  (   )z

     (   )z

hit position,    x

x

N is the number of layers (in the plot N = 4).
zi are positions of detecting layers.
xi , i = 1, 2, 3, 4 are measured coordinates of hits.
xt,i are true positions of hits.
ǫi are errors of measurements: xi = xt,i + ǫi .
l1,2...(z) is the position of the straight line fitted
by layers 1, 2... at z.
More formal notation of fitted track: l̂(wν , x , zi ):

Each straight line is fitted with own sets of weights;
wν denotes a vector of all wν,i for set of weights ν
and for all layers i ∈ [1,N]; some wν,i can be zero,
which means that the corresponding layers are
not used for fit;
x denotes a vector of all xi .

ri are residuals xi − l1,2...(zi ).

E(ξ) is the expectation of any value ξ (which can be xi , ǫi , etc.).
σ(ξ) is the standard deviation of any value ξ. V (ξ) = σ(ξ)2 is the variance.
cov(ξ1, ξ2) = E [(ξ1 − E(ξ1))(ξ2 − E(ξ2))] is the covariance.
ξ, E(ξ), σ(ξ), V (ξ) are vectors with N components.
No systematic shifts and no electric cross talks between layers =>

• the expectation E(ǫi ) = 0,

• the correlations corr(ǫi , ǫj ) = 0 ,

But xt,i are correlated! => xi are correlated as well!
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Residuals

Find the parameters by minimization of M =
∑N

i=1 wν,i

(
xi − l(zi )

)2
,

wν,i is the weight that we want to use.
Why not to use different weights if it helps to reconstruct resolutions?..
The optimal line for these weights: l̂(wν , x , zi ) = â1(wν , x) + â2(wν , x)z .
â1(wν , x) and â2(wν , x) are linear functions of components of x .

The variance of residuals: V (ri ) = V (xi − l̂(wν , x , zi )) = V
(
xt,i + ǫi − l̂(wν , xt + ǫ, zi )

)

depends on known w and unknown ǫ and unknown xt ⇒

Application of the error propagation rules is not promising.
rν,i (x) = xi − l̂(wν , x , zi ) =

∑N
j=1 uν,ijxj , where uν,ij are constants that do not depend on x .

The residual calculated with true xt should be zero. Therefore, by construction:

rν,i (xt) = xt,i − l(wν , xt, zi ) =
N∑

j=1

uν,ijxt,j = 0 .

Then:

rν,i (x) =xi − l̂(wν , x , zi ) =
N∑

j=1

uν,ijxj =

N∑

j=1

uν,ij (xt,j + ǫj ) =
N∑

j=1

uν,ijxt,j +
N∑

j=1

uν,ij ǫj =
N∑

j=1

uν,ij ǫj = ǫi − l̂(wν , ǫ, zi ).

The “Hat” matrix is from [A.C. Rencher G.B. Schaalje , Linear Models in Statistics, 2008,
page 228] plays similar role, but it is without the weights.

Conclusion: if any residual is a linear function of x , we can substitute x by ǫ.
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Error propagation

After that we can apply error propagation rules and calculate variances of residuals, taking
into account cov(ǫi , ǫj ) = 0.

Denote u2
ν,ij by hij . Then: V (ri ) =

∑N
j=1 hijV (ǫj ).

The matrix H consists of elements hij . Then: V (r) = HV (ǫ) ⇒ V (ǫ) = H−1V (r) .
By calculating the cariances from the experimental data, we can obtain the resolutions,
provided that the matrix H is not singular.

This is a particular case of covariances of residuals.

Denote uν,ikuµ,jk by h
(ν,µ)
i,j,k

. Then: cov(rν,i , rµ,j ) =
∑N

k=1 h
(ν,µ)
i,j,k

V (ǫk ).

Now denote by H the N × N matrix:

H =





h
(ν1,µ1)
i1,j1,1

h
(ν1,µ1)
i1,j1,2

. . . h
(ν1,µ1)
i1,j1,N

h
(ν2,µ2)
i2,j2,1

h
(ν2,µ2)
i2,j2,2

. . . h
(ν2,µ2)
i2,j2,N

.

.

.
.
.
.

.

.

.
.
.
.

h
(νN ,µN )
iM ,jN ,1 h

(νN ,µN )
iN ,jN ,2 . . . h

(νN ,µN )
iN ,jN ,N




.

Denote the vector of corresponding covariances cov(rν,i , rµ,j ) by y .
Then: y = HV (ǫ) ⇒ V (ǫ) = H−1

y .

Unfortunately, all possible H-matrices are singular for 3- and 4-layer detectors.
Varying weights does not help, details are later.
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Geometric means, inclusive and exclusive residuals
Let ∃i

(
wν,i > 0 ∧ wµ,i = 0 ∧ (∀j 6= i wµ,j = wν,j > 0)∧
(
∃j 6= i ∧ ∃k 6= i (j 6= k ∧ wµ,j > 0 ∧ wµ,k > 0)

))

Meaning: the second set denoted by µ (“exclusive”) is identical to the first one denoted by
ν (“inclusive”) except the zero weight of layer i . There are at least two non-zero weights in
the second set.

• Then both residuals are ratios with idential numerators.
• Numerators are linear combinations of hit coordinates ⇒ can replace them to errors

and apply the error propagation rules ⇒
• Numerators of variances are the same ⇒ numerator of root of product is the same as

the numerators of residual variances taken separately! ⇒

the geometric mean can be handled similarly and does not provide additional
information.

According to [R.K. Carnegie, et al, NIM A 538(2005)372] and [D.C. Arogancia, et al, NIM

A 602(2009)403] wi = 1/V (ǫi ) Then V
(gm)
i

= V (ǫi ).
This result is beautiful, but useless, because in order to obtain residuals with weights
wi = 1/V (ǫi ), we have already to know these very resolutions

√
V (ǫi ), which we want to

obtain. Numerical tests show that an iteration procedure with remaking the residuals with
previously obtained weights is not useful too.

If all V (ǫi ) are equal, then V
(gm)
i

= V (ǫi ) again.
The Monte-Carlo in Ref. [T. Alexopoulos et al., JINST, 9 (2014) P01003] seems to confirm
that this formula is correct for equal resolutions and not accurate for non-equal resolutions,
but unfortunately this work like many others do not specify which weights were used for
track fitting. Assume unity by default?.. Note that the same results can be easily obtained

from any single residual: V (ǫi ) =
V (ri )∑
N
j=1

u2
ij

.
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Reconstruction of resolution, three detecting layers
The H-matrix for three layers is singular for any given system of equations for variances,
covariances, weights, and z-coordinates of layers.
It is however not easy to prove that this holds for arbitrary set of equations and parameters.
“Manual” proof is unknown, but the singularity can be proved by CAS:

• All systems of equations are singular.

• Always:
h
(ν,µ)
i,j,2

h
(ν,µ)
i,j,1

= (z3−z1)
2

(z3−z2)2
,

h
(ν,µ)
i,j,3

h
(ν,µ)
i,j,1

= (z2−z1)
2

(z3−z2)2
.

1. All weights are cancelled!
2. All equations are linearly dependent.

Therefore, only one value can be obtained. For example, for equal gaps: the inaccurate
average

(
V (ǫ1) + 4V (ǫ2) + V (ǫ3)

)
/6.

But if z1 ≈ z2 ≈ z3, all three resolutions can be easily found.
The same is true if the directions or tracks are known, i.e. measured by a remote detecting
layer.
If one can move or rearrange layers, all resolutions can be reconstructed.
The idea to check layer permutations was proposed by N. V. Gruzinsky.
For example, for unity weights;
V (r1) is obtained after permutation of the first and the second layer,
V (r2) is obtained without permutations or moving,
V (r3) is obtained after permutation of the second and the third layer
(the residual in the original second layer is always obtained, but this layer is placed in
different places), then

H−1 =




10 −0.5 −2
−2 2.5 −2
−2 −0.5 10




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Reconstruction of resolution, four detecting layers

The H-matrix for four layers is singular for any given system of equations for variances,
covariances, weights, and z-coordinates of layers.
“Manual” proof is unknown, but the singularity can be shown by CAS.
Considerable computational problems for CAS:

too many combinations of equations and parameters.
Let z1 = 0.
Need filtering to avoid effectively the same systems of equations,
because permutations of equations and variables do not always make the systems of
equations different.

After filtering 164 systems of equations remain.
CAS Reduce and GiNaC: All determinants are zero.

This conclusion agrees with result of R. Frühwirth, which is written for a particular case,
and disagrees with claims of J. Bortfeldt for another particular case.

Remove any line in any of 164 systems of equations.
Compose 3× 3 matrix from 3 first columns.
CAS Reduce: All determinants are non-zero.
Therefore all these H-matrices have rank 3,
and that only 3 y -values are linearly independent.
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Reconstruction of resolution, four detecting layers,
average resolution of layers with fixed positions by matrix algebra

Suppose that there are 3 parameters αi , that allow one to express the average variance as a
linear combination of measured y :

∀V (ǫ)
3∑

i=1

αiyi = αpT
y
p = αpTHpV (ǫ) =

1

4

4∑

i=1

V (ǫi ) ⇒ HpTαp =
1

4
1 .

The superscript “p” (“partial”) means vectors with 3 components and 3× 4 matrices.
Denote by T the 3× 3 matrix composed of three first rows of HpT.
The solution of three first equations is

αp =
1

4
T−1

1,

CAS “Reduce”: none of the solutions of the first three equations satisfies the fourth
equation for arbitrary weights and layer positions (z-values).

The exact average resolution cannot be found for arbitrary layer positions.
Symmetry of layer positions: z2 − z1 = z4 − z3
(called “symmetric detector”, “symmetric arrangement”, after filtering 399 systems remain)
⇒ the fourth equation is always satisfied.

The average resolution can be found in symmetric 4-layer detector.
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Reconstruction of resolution, four detecting layers,
average resolution of layers with fixed positions by matrix algebra (2)
A different type of symmetry: the H-matrix is symmetric with respect to its center:

hij = h4−i+1,4−j+1.

Hr




V (ǫ1) + V (ǫ4)

V (ǫ2) + V (ǫ3)



 =




y1 + y4

y2 + y3



 , where Hr =




h11 + h14 h12 + h13

h21 + h24 h22 + h23



 .

If Hr is not singular: 


(V (ǫ1) + V (ǫ4))/2

(V (ǫ2) + V (ǫ3))/2



 =
1

2
(Hr)−1




y1 + y4

y2 + y3



 ,

The total average 1
4

4∑
i=1

V (ǫi ) is then calculated as the mean of these two averages.

CAS “Reduce”: the Hr-matrix is not singular for some general set of symmetric H-matrices
written for symmetric detectors: if the detector is symmetric; if the weights are symmetric:
∀ν ∈ [5, 8] ∧ ∀i ∈ [1, 4] wν,i = w9−ν,5−i ; and if in and jn (assuming that in 6 jn) are
symmetric: (i1 = 5− j4 ∧ j1 = 5− i4) ∧ (i2 = 5− j3 ∧ j2 = 5− i3). There are 18 systems
that satisfy these conditions. The most obvious and useful choice of such a matrix for y

consisting of variances measured sequentially in layers 1, 2, 3, and 4:

y =





V (r1,1)
V (r2,2)
V (r3,3)
V (r4,4)



 ,

and for symmetric weights: wi,k = w4−i+1,4−k+1. Then the H-matrix is symmetric with
respect to its center.
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Simplification of H-matrix by row reduction
Any H-matrix can be “regularized” using a simple row reduction method.
Recall the row reduction method:
The row reduction: subtraction of a line m from all other lines with a factor hnm/hmm.
Perform this procedure for m = 2, m = 3, and m = 1.
In addition, subtract the second line with factor presented by the ratio of new values in the
last column h34/h24 from the third line.
Each step ≡ multiplication of the H-matrix by another matrix: GHV (ǫ) = Gy ,
An unexpected property of this matrix:

all k-values are identical and independent on the weights.

GH =





c11 0 0 c11k1

0 c22 0 c22k2

0 c32 c32k3 0

0 0 0 0




,

k1 =
(z2 − z1)(z3 − z1)

(z4 − z2)(z4 − z3)
,

k2 = −
(z2 − z1)(z3 − z2)

(z4 − z3)(z4 − z1)
,

k3 =
(z2 − z1)(z4 − z2)

(z3 − z1)(z4 − z3)
.

This is obtained for particular equations and weights and proven algebraically provided that
the rank of H-matrix is not greater than 3. Otherwise the maximal rank should be 4:
Suppose that there are different G1H1 and G2H2 and least one of ki is different in them.

(
G1H1

G2H2

)

=

(
G1 0

0 G2

)(
H1

H2

)

.
The rank of
the left-hand
side is 4

⇒ the rank of

(
H1

H2

) should not be less
than 4 which con-
tradicts to calcula-
tions with Reduce
and GiNaC.

Therefore, the values of ki cannot differ in any G1H1 and G2H2.
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Properties of reduced H-matrix

Repetition:

GH =





c11 0 0 c11k1

0 c22 0 c22k2

0 c32 c32k3 0

0 0 0 0




,

k1 =
(z2 − z1)(z3 − z1)

(z4 − z2)(z4 − z3)
,

k2 = −
(z2 − z1)(z3 − z2)

(z4 − z3)(z4 − z1)
,

k3 =
(z2 − z1)(z4 − z2)

(z3 − z1)(z4 − z3)
.

The properties:

• ∀i < j zi < zj (if z-values are sorted in ascending order), then k1 > 0, k3 > 0 and
k2 < 0.

• For the same gaps between layers and ∀i < j zi < zj : k1 = k3 = 1, k2 = −1/3.

• If gaps are not the same, ∀i < j zi < zj , and if the detector is symmetric:
z2 − z1 = z4 − z3, than k1 = k3 = 1, −1 < k2 < 0.

• Always: hi4 = k1hi1 + k2hi2 − k2/k3hi3.
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Average resolutions of layers with symmetric arrangement

Assuming symmetric arrangement z2 − z1 = z4 − z3 with
z-values sorted in ascending order ∀i < j zi < zj .
For k1 = k3 = 1, −1 < k2 < 0:

GH =





c11 0 0 c11

0 c22 0 c22k2

0 c32 c32 0

0 0 0 0




,GHV (ǫ) = Gy ⇒

V (ǫ1) + V (ǫ4)

2
=

[Gy ]1

2c11
,

V (ǫ2) + V (ǫ3)

2
=

[Gy ]3

2c32

1

4

4∑

i=1

V (ǫi ) =
1

4

( [Gy ]1

c11
+

[Gy ]3

c32

)

Here [Gy ]1 and [Gy ]3 are the first and the third component of the vector Gy .
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The resolutions of layers provided that
the resolution of two given layers are equal

For symmetric detectors, add the first row of the GH-matrix with a factor −k2c22/(2c11) to
the second row.

GH =





c11 0 0 c11

−k2c22/2 c22 0 c22k2/2

0 c32 c32 0

0 0 0 0





For equal gaps k2/2 = −1/6.
If V (ǫ1) ≈ V (ǫ4) ⇒

[GHV (ǫ)]2 ≈ c22V (ǫ2) ⇒

V (ǫ2) ≈
[Gy ]2
c22

+
[Gy ]1
6c11

,

V (ǫ3) ≈
[Gy ]3
c32

− V (ǫ2) =

= −
[Gy ]1
6c11

−
[Gy ]2
c22

+
[Gy ]3
c32

General solution for equal layers 1 and 4 (for example; the “hat” means reconstructed):

V̂ (ǫ14) =
[Gy ]1

c11(1 + k1)
,

V̂ (ǫ2) = −k2
[Gy ]1

c11(1 + k1)
+

[Gy ]2

c22
,

V̂ (ǫ3) =
1

k3

(
k2

[Gy ]1

c11(1 + k1)
−

[Gy ]2

c22
+

[Gy ]3

c32

)
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The resolutions of layers provided that
the resolution of two given layers are equal (2)

Assume that σ(ǫi ) ≈ σ(ǫj ), but σ(ǫi )− σ(ǫj ) = 2τ , where τ is some small number;
the second form is for equal gaps:
For identical layers i = 1 and j = 4:

dσ̂(ǫ14)

dτ
=

k1 − 1

k1 + 1

σ(ǫ14)

σ̂(ǫ14)
= 0,

dσ̂(ǫ2)

dτ
=

2k2

k1 + 1

σ(ǫ14)

σ̂(ǫ2)
= −

1

3

σ(ǫ14)

σ̂(ǫ2)
,

dσ̂(ǫ3)

dτ
= −

2k2

k3(k1 + 1)

σ(ǫ14)

σ̂(ǫ3)
=

1

3

σ(ǫ14)

σ̂(ǫ3)
.

For identical layers i = 2 and j = 3:

dσ̂(ǫ23)

dτ
=

k3 − 1

k3 + 1

σ(ǫ23)

σ̂(ǫ23)
= 0,

dσ̂(ǫ1)

dτ
=

2k1k3

k2(k3 + 1)

σ(ǫ23)

σ̂(ǫ1)
= −3

σ(ǫ23)

σ̂(ǫ1)
,

dσ̂(ǫ4)

dτ
= −

2k3

k2(k3 + 1)

σ(ǫ23)

σ̂(ǫ4)
= 3

σ(ǫ23)

σ̂(ǫ4)
.

For supposed equal layers i and j :

i = 1 i = 2 i = 1 i = 1 i = 2 i = 3
j = 4 j = 3 j = 2 j = 3 j = 4 j = 4

σ̂′

τ
(ǫ1) 0 -3 1/2 2 3 3/2

σ̂′

τ
(ǫ2) −1/3 0 1/2 -1 -2 −1/2

σ̂′

τ
(ǫ3) 1/3 0 1/2 2 1 −1/2

σ̂′

τ
(ǫ4) 0 3 −3/2 -3 -2 −1/2

Allocate supposedly equal layers outside —
and obtain almost exact resolutions of the inner layers!
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Average resolutions of layers with asymmetric arrangement

If the detector is not perfectly symmetric, but the offset is small due to misalignment, etc.,
no exact average value, but how about the approximate estimate?
Instead of

V (ǫ1) + V (ǫ4)

2
=

[Gy ]1

2c11
,

V (ǫ2) + V (ǫ3)

2
=

[Gy ]3

2c32

1

4

4∑

i=1

V (ǫi ) =
1

4

( [Gy ]1

c11
+

[Gy ]3

c32

)

a weighted averages v =
∑N

i=1 wivi/s, s =
∑N

i=1 wi = 1.
γ1c11V (ǫ1) + γ1c11k1V (ǫ4) = γ1[Gy ]1
γ1 : γ1c11 + γ1c11k1 = γ1c11(1 + k1) = 1 ⇒ γ1 = 1/(c11(1 + k1)) and
(with similar derivation for the third row):

V (ǫ1) + V (ǫ4)
∧

2
=

[Gy ]1

c11(1 + k1)
,

V (ǫ2) + V (ǫ3)
∧

2
=

[Gy ]3

c32(1 + k3)

1

4

4∑
i=1

V (ǫi )

∧

=
[Gy [1

2c11(1 + k1)
+

[Gy ]3

2c32(1 + k3)
.

For asymmetric detectors slightly more accurate estimates by fits of vector α in equations

like
4∑

i=1
αiV (ri ) = α⊺HV (ǫ) = 1

4

4∑
i=1

V (ǫi ), H
⊺α = 1

4
1, denote β = HTα.

For example, for the total average to minimize: S =
4∑

i=1
(βi − 1/4)2, provided that

4∑
i=1

βi = 1.
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Moving layers

Assume that the gaps are equal.
For example, for unity weights;
V (r2) and V (r3) are obtained with initial allocation of layers,
V (r1) and V (r4) be obtained after the permutation of the first and the last layer.
(The residual V (r1) is actually measured in the fourth layer allocated in the position of the
first layer, and vice versa.)

H−1 =





13/8 −11/24 −91/24 93/8
−11/24 157/72 77/72 −91/24
−91/24 77/72 157/72 −11/24
93/8 −91/24 −11/24 13/8




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Reconstruction of resolution, five detecting layers

For 5 layers there are a lot of combinations of independent equations.
For example, two-layer straight lines for equally spaced layers provide 195 non-singular
systems of equations.
Obviously, there are much more independent equations for 6- and more-layer detectors.
It is reasonable to use N equations for simple “exclusive” residuals with unity weights of
included layers.
The example of inverse matrix for equally spaced five layers:

H−1 =





1.746 −1.749 −0.187 0.701 −0.653

−0.571 1.578 −0.022 −0.260 0.229

−0.046 −0.017 1.026 −0.017 −0.047

0.228 −0.260 −0.022 1.578 −0.571

−0.654 0.701 −0.188 −1.748 1.746





.
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Conclusion

1. A general method for reconstructing individual resolutions of detecting layers in
multi-layer detectors is developed.

2. The individual layer resolutions can be obtained for 3- and 4-layer detectors only if
there is a possibility to move the layers.

3. If the layers cannot be moved, but the 4-layer detector is symmetric, the following
values can be obtained:
a) The average squared resolution of four layers;
b) The average squared resolutions of layers 1 and 4, as well as 2 and 3;
c) If the resolutions of layers 1 and 4 are assumed to be equal, the individual resolutions of all

layers (assuming the first and the fourth identical) can be obtained.

4. If the symmetry is slightly violated in the 4-layer detector, approximate estimates of all
values mentioned in the previous item can be obtained.

5. The individual resolutions can be obtained for 5- and more-layer detectors.

6. All these results can be calculated by either residuals or geometric means of inclusive
and exclusive residuals. The geometric means of residuals, as well as correlations of
residuals, do not produce any additional information. The geometric means obtained
with unity weights are equal to the layer resolution only if the detector layers have the
same resolution.
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