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Optimizing control systems in particle accelerators presents significant challenges, often requiring extensive
manual effort and expert knowledge. Traditional tuning methods are time-consuming and may struggle
to navigate the complexity of modern beamline architectures. To address these challenges, we introduce
a simulation-based framework that leverages Reinforcement Learning (RL) [1] to enhance the control and
optimization of beam transport systems. Built on top of the Elegant simulation engine [2], our Python-based
platform automates the generation of simulations and transforms accelerator tuning tasks into RL environ-
ments with minimal user intervention. The framework features a modified Soft Actor-Critic (SAC) agent [3]
enhanced with curriculum learning techniques [4], enabling robust performance across a variety of beamline
configurations. Designed with accessibility and flexibility in mind, the system can be deployed by non-experts
and adapted to optimize virtually any beamline. Early results demonstrate successful application across mul-
tiple simulated beamlines, validating the approach and offering promising potential for broader adoption. We
continue to refine the framework toward a general-purpose solution—one that can serve both as an intelligent
co-pilot for physicists and a testbed for RL researchers developing new algorithms. This work highlights the
growing synergy between AI and accelerator physics [1, 3], and the critical role of computational innovation
[2] in advancing experimental capabilities.
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