Contribution ID: 263

Type: Oral

Experimental Investigation of Mass and Total Kinetic Energy Distributions of Fragments Formed in the ⁴⁸Ca + ²⁰⁸Pb Reaction

Wednesday 2 July 2025 15:30 (20 minutes)

The 48 Ca + 208 Pb reaction is distinguished by its unique combination of advantages in heavy-ion fusion studies, as both interacting partners are doubly magic nuclei. Moreover, the 208 Pb target provides a cold fusion pathway, while the neutron-rich 48 Ca projectile provides a significant neutron excess, favoring the formation of neutron-rich compound nuclei.

The survival probability of a superheavy nucleus in heavy-ion fusion reactions is directly related to its fission barrier magnitude. In transuranium elements, the fission barrier is predominantly due to shell effects, while the liquid-drop contribution is minimal [1]. The present work aims to investigate the characteristics of the mass-total kinetic energy (M-TKE) distribution of binary reaction products from the ${}^{48}Ca + {}^{208}Pb$ reaction, to conduct a detailed examination of this reaction system, and to obtain an experimental estimate of the fission barriers for 256 No nucleus.

The experiments were carried out using the U400 cyclotron at the Flerov Laboratory of Nuclear Reactions, Dubna, Russia. Beams of ⁴⁸Ca with energies of 208–281 MeV bombarded isotopically enriched thin targets of ²⁰⁸Pb to populate the ²⁵⁶No^{*} compound nucleus at different excitation energies. The binary reaction products were detected in coincidence using the double-arm time-of flight (ToF-ToF) spectrometer CORSET [2]. A detailed analysis of the mass–total kinetic energy distributions of fission-like fragments from the ⁴⁸Ca + ²⁰⁸Pb reaction has been performed, and fission cross sections were obtained. From a combined analysis of the fission barrier of the ²⁵⁶No nucleus has been estimated.

References

- [1] M. G. Itkis et al., Phys. Rev. C 65, 044602 (2002).
- [2] E. M. Kozulin et al., Instrum. Exp. Tech. 51, 44 (2008).
- [3] Yu. Ts. Oganessian et al., Phys. Rev. C 64,054606 (2001).
- [4] A. V. Belozerov et al., Eur. Phys. J A 16, 447 (2003).
- [5] H. W. G'aggeler et al., Nucl. Phys. A 502, 561 (1989).

Primary author: SATHYAN, Sanila (Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research)

Co-authors: KOZULIN, Eduard (Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research); KNYAZHEVA, Galina (Joint Institute for Nuclear Research); BOGACHEV, Alexey (Joint Institute for Nuclear Research); ITKIS, Yulia (Joint Institute for Nuclear Research); NOVIKOV, Kirill (Joint Institute for Nuclear Research); RACHKOV, Vladimir (Joint Institute for Nuclear Research); PCHELINTSEV, Ivan (Flerov Laboratory of Nuclear Research); VOROBIEV, Igor (Joint Institute for Nuclear Research); DEY, Aniruddha (Flerov Laboratory of Nuclear Research); KULKOV, Kirill (Joint Institute for Nuclear Research); KULKOV, Kirill (Joint Institute for Nuclear Research); SAVELJEVA, Ekaterina (Joint Institute for Nuclear Research); LYUTOVA, Anna (Dubna State University); NASRABADI, Mahdi (Faculty of Physics, University of Isfahan)

Presenter: SATHYAN, Sanila (Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research)

Session Classification: 2. Experimental and theoretical studies of nuclear reactions

Track Classification: Section 2. Experimental and theoretical studies of nuclear reactions.