

НОВЫЕ ДАННЫЕ ДЛЯ ⁵²Cr И ⁶⁸Zn И3 ЭКСПЕРИМЕНТОВ С ИСПОЛЬЗОВАНИЕМ ТОРМОЗНОГО ИЗЛУЧЕНИЯ

Варламов В.В., Давыдов А.И., Мостаков И.А., Орлин В.Н.

МГУ имени М.В. Ломоносова, НИИЯФ имени Д.В. Скобельцына, Физический факультет

Большинство данных о сечениях парциальных фотонейтронных реакций получено в Ливерморе (США) и Сакле (Франция) на пучках квазимоноэнергетических аннигиляционных фотонов с помощью метода разделения нейтронов по множественности и на пучках тормозного –излучения, с помощью метода использования специальных поправок, рассчитанных по статистической теории.

В первом методе непосредственно получаются сечения реакций (γ, 1n), (γ, 2n), для некоторых (γ, 3n), с помощью которых затем получаются сечения полной фотонейтронной реакции

 $(\gamma, Sn) = (\gamma, 1n) + (\gamma, 2n) + (\gamma, 3n) + ...$

и сечение выхода нейтронов

 $(\gamma, xn) = (\gamma, 1n) + 2(\gamma, 2n) + 3(\gamma, 3n) + ...$

Во втором методе – непосредственно получается

 $(\gamma, xn) = (\gamma, 1n) + 2(\gamma, 2n) + 3(\gamma, 3n) + ...,$

Из которого с помощью поправок по статистической теории

(ү, 1n), (ү, 2n) и(ү, 3n),

Систематические расхождения экспериментальных данных, полученных первым методом

Главная проблема – существенные систематические расхождения : для 19 ядер, исследованных в обеих лабораториях: в то время как сечения выхода нейтронов (ү, хn) = (ү, 1n) + 2(ү, 2n) + 3(ү, 3n) + ...) близки, сечения реакций (ү, 1n) имеют заметно большие величины в Сакле, тогда как (ү, 2n) – в Ливерморе.

частиц. Ядерно-физические технологии»

Объективные физические критерии достоверности

7/5/2025

LXXV Международная конференция «ЯДРО-2025. Физика атомного ядра и элементарных

Признаки недостоверности данных

LXXV Международная конференция «ЯДРО-2025. Физика атомного ядра и элементарных

частиц. Ядерно-физические технологии» 1 - 6 июля, Санкт-Петербург

Экспериментально-теоретический метод оценки

Предложен новый экспериментально-теоретический метод оценки сечений парциальных фотонейтронных реакций, удовлетворяющих физическим критериям достоверности:

только экспериментальное сечение реакции полного выхода нейтронов σ^{эксп}(γ, xn) = σ^{эксп}(γ, 1n) + 2σ^{эксп}(γ, 2n) + 3σ^{эксп}(γ, 3n)
+ ... априори свободное от ограничений метода разделения нейтронов по множественности, поскольку включает в себя вклады нейтронов из всех парциальных реакций, используется как исходное;

для определения вкладов в сечение выхода нейтронов σ^{эксп}(γ, xn) сечений парциальных реакций σ^{οцен}(γ, 1n), σ^{οцен}(γ, 2n), σ^{οцен}(γ, 3n) используются переходные функции множественности - отношения F^{теор}1,2,3,..., рассчитанные в рамках комбинированной модели фотоядерных реакций.

Суть экспериментально-теоретического метода оценки сечений парциальных реакций: соотношение между ними соответствует представлениям модели, а соответствующая сумма сечений парциальных реакций б^{оцен}(ү, xn) равна сечению выхода нейтронов б^{эксп}(ү, xn), практически не зависящему от проблем экспериментального разделения нейтронов по множественности.

Оцененные (достоверные) и экспериментальные (недостоверные) сечения парциальных реакций существенно различаются.

LXXV Международная конференция «ЯДРО-2025. Физика атомного ядра и элементарных

частиц. Ядерно-физические технологии» 1 - 6 июля, Санкт-Петербург

Выполненные исследования свидетельствуют о том, что существенные (во многих случаях до 100% величины и большие) расхождения сечений парциальных реакций, определенных в разных экспериментах на пучках аннигиляционных фотонов, обусловлены разными систематическими погрешностями использованного непрямого метода разделения нейтронов по множественности.

Установлено, что причинами таких погрешностей являются:

- близость энергий нейтронов из разных парциальных реакций, затрудняющая идентификацию множественности нейтронов и их принадлежности реакциям (ү,1n) и (ү,2n);
- отсутствие учета вклада реакции (ү,1n1p), которая по своим параметрам конкурирует не с реакцией (ү,1n) с той же множественностью 1, а с реакцией (ү,2n) с множественностью 2, затрудняющее идентификацию принадлежности нейтрона реакциям (ү,1n1p) и (ү,2n);
- некоторые технические проблемы (ошибки в нормировке выходов Ye- на пучке электронов и Ye+ на пучке позитронов, потеря части нейтронов из реакции (γ,1n)).

В этой связи актуальной стала проблема достоверности данных, полученных кардинально иным способом в экспериментах на пучках тормозного ү–излучения.

LXXV Международная конференция «ЯДРО-2025. Физика атомного ядра и элементарных

частиц. Ядерно-физические технологии» 1 - 6 июля, Санкт-Петербург

10

Новые (неопубликованные ранее) сечения фотонейтронных реакций, получены для нескольких ядер:

51V, 52Cr, 59Co, 58,60Ni: $σ(\gamma,2n) = σ^{ony6n}(\gamma,sn) - σ^{ony6n}(\gamma,1n);$ $σ(\gamma,xn) = σ^{ony6n}(\gamma,sn) + σ(\gamma,2n);$

 $90Zr, ^{115}In:$ $σ(\gamma, 2n) = σ^{ony6n}(\gamma, xn) - σ^{ony6n}(\gamma, sn);$ $σ(\gamma, 1n) = σ^{ony6n}(\gamma, sn) - σ(\gamma, 2n);$

 $\sigma(\gamma,1n) = \sigma^{\text{опубл}}(\gamma,\text{sn}) - \sigma^{\text{опубл}}(\gamma,2n);$ $\sigma(\gamma,\text{xn}) = \sigma^{\text{опубл}}(\gamma,\text{sn}) + \sigma(\gamma,2n);$

¹⁶⁵Ho: $\sigma(\gamma, sn) = \sigma^{ony6n}(\gamma, xn) - \sigma^{ony6n}(\gamma, 2n);$ $\sigma(\gamma, 1n) = \sigma^{ony6n}(\gamma, xn) - 2\sigma^{ony6n}(\gamma, 2n).$

LXXV Международная конференция «ЯДРО-2025. Физика атомного ядра и элементарных частиц. Ядерно-физические технологии» 1 - 6 июля, Санкт-Петербург

Способы получения новых неопубликованных ранее данных

Новые данные по сечениям реакций на основе комбинаций опубликованных сечений

 $\sigma(\gamma, xn) = \sigma(\gamma, 1n) + 2\sigma(\gamma, 2n)$ и $\sigma(\gamma, sn) = \sigma(\gamma, 1n) + \sigma(\gamma, 2n)$ или $\sigma(\gamma, sn)$ и $\sigma(\gamma, 1n)$ и/или $\sigma(\gamma, sn)$ и $\sigma(\gamma, 2n)$

Такие неопубликованные новые данные для реакций (ү, 1n), (ү, 2n) и/или (ү, sn) и (ү, xn) получены для ядер ⁵¹V, ⁵²Cr, ⁵⁹Co, ^{58,60}Ni.

Достоверность применения обсуждаемых поправок исследована с применением отношений экспериментально-теоретического метода $Fi = \sigma(\gamma, in) / \sigma(\gamma, xn),$ получены оцененные сечений реакций $\sigma^{oueh}(\gamma, in) = F_i^{Teop} \cdot \sigma^{skcn}(\gamma, xn).$

Проведено сравнение оцененных таким образом данных с результатами экспериментов на пучках аннигиляционных фотонов для ядер ⁵¹V, ⁵⁹Co, ^{58,60}Ni.

Для ядра ⁵²Cr впервые получены новые данные для реакций ⁵²Cr(γ, xn) и ⁵²Cr(γ, 2n)⁵⁰Cr – в аннигиляционных экспериментах отсутствуют.

> LXXV Международная конференция «ЯДРО-2025. Физика атомного ядра и элементарных частиц. Ядерно-физические технологии»

1 - 6 июля, Санкт-Петербург

а

Новые данные,

о сечении парциальной реакции $\sigma(\gamma, 2n)$ и сечении выхода нейтронов $\sigma(\gamma, xn)$, оценка с помощью экспериментально-теоретического метода.

LXXV Международная конференция «ЯДРО-2025. Физика атомного ядра и элементарных

частиц. Ядерно-физические технологии»

30

Новые данные,

о сечении парциальной реакции σ(γ, 2n) и сечении выхода нейтронов σ(γ, xn), оценка с помощью экспериментально-теоретического метода.

LXXV Международная конференция «ЯДРО-2025. Физика атомного ядра и элементарных

частиц. Ядерно-физические технологии»

Новые неопубликованные ранее данные

В тех случаях, когда единственным публикованным сечением является сечение выхода нейтронов

 $σ^{3\kappa cn}(\gamma, xn) = σ^{3\kappa cn}(\gamma, 1n) + 2σ^{3\kappa cn}(\gamma, 2n)$

новые сечения парциальных реакций могут быть получены с помощью экспериментально-теоретического метода

 $σ_{\text{oueh}}(\gamma, 2n) = F_2^{\text{teop}} \bullet \sigma_{\text{эксп}}(\gamma, xn).$

Получены новые неопубликованные (не исследованные и на пучках квазимоноэнергетических фотонов) сечения парциальных реакций, соответствующие физическим критериям достоверности.

⁶⁸Zn(ү, 1n)⁶⁷Zn и

 68 Zn(γ , 2n) 66 Zn, а также - $\sigma(\gamma, sn) = \sigma(\gamma, 1n) + \sigma(\gamma, 2n)$

1755

2025

Новые неопубликованные ранее данные

2025

1755

частиц. Ядерно-физические технологии»

После определения естественных вкладов сечений реакций σ(γ,2n) = σ(γ,xn) - σ(γ,sn) и σ(γ,1n) = σ(γ,sn) - σ(γ,2n) с помощью экспериментально-теоретического метода (F_i^{эксп} и F_i^{теор}) было установлено, что к достоверности данных экспериментов этого типа также имеются серьезные претензии.

Существенные расхождения между F_i^{3KCT} и F_i^{Teop} :

как правило, F₁эксп занижены, а F₂эксп завышены.

LXXV Международная конференция «ЯДРО-2025. Физика атомного ядра и элементарных частиц. Ядерно-физические технологии»

LXXV Международная конференция «ЯДРО-2025. Физика атомного ядра и элементарных

Главная причина некорректности разделения выходов реакций (γ,1n) и (γ,2n) в рамках испарительной статистической модели обусловлена тем, что эта модель более-менее правильно описывает эмиссию нейтронов из составного ядра только при энергиях падающих фотонов до 10-15 МэВ.

При более высоких энергиях, т.е. в области, где собственно и происходит конкуренция парциальных реакций (ү,1n) и (ү,2n), статистические поправки на множественность становятся очень не точными, так как начинают играть большую роль процессы предравновесного распада составной системы с испусканием на равновесной стадии более чем одной быстрой частицы – двух нейтронов в реакции (ү,2n) и/или нейтрона и протона в реакции (ү,1n1p).

В полуклассических моделях фотоядерных реакций обычно не учитывается влияние изоспиновых эффектов на конкуренцию нейтронных и протонных каналов реакций, что приводит к заниженным оценкам парциальных сечений с вылетом протонов. В случаях ядер с протонными порогами ниже нейтронных, это может привести к искажению соотношения реакций (у,1n) и (у,2n).

Расхождения между экспериментальными и оцененными сечениями парциальных реакций обусловлены тем, что оба рассмотренных фактора не учитывались статистической моделью, но учтены в комбинированной модели фотоядерных реакций.

LXXV Международная конференция «ЯДРО-2025. Физика атомного ядра и элементарных

частиц. Ядерно-физические технологии»

Результаты расчетов в КМФЯР сечений реакций (ү, 1n1p) и (ү, 2n):

в относительно легких ядрах амплитуды сечений близки,

тогда как в средних и тяжелых ядрах существенно (на порядки величины) различаются.

Реакция	(γ , 1n1p)		(γ, 2n)	
Ядро	Емакс, МэВ	О ^{макс} , Мбн	о ^{макс} , Мбн	Е ^{макс} , МэВ
51 V	24.4	12.6	11.9	23.6
52 Cr	34.0	9.3	8.8	33.4
⁵⁹ Co	21.8	19.4	15.4	23.4
⁶⁸ Zn	25.0	6.1	19.6	43.0
⁸⁰ Se	26.2	2.6	45.6	19.6
90 Zr	28.0	2.4	14.2	24.0
¹⁸¹ Ta	34.6	1.1	193.0	16.2

LXXV Международная конференция «ЯДРО-2025. Физика атомного ядра и элементарных

Основные общие выводы по результатам экспериментов, в которых получено абсолютное большинство данных по сечениям фотонейтронных реакций

- установлено, что непрямой метод разделения реакций с различной множественности приводит к существенным систематическим погрешностям, делающим экспериментальные сечения реакций недостоверными;
- установлено, что сечения парциальных реакций (ү, 1n) и (ү, 2n) для ядер ⁵¹V, ⁵²Cr, ⁵⁹Co, ^{58,60}Ni, ⁹⁰Zr, ¹¹⁵In, ¹²⁷I, ¹⁶⁵Ho физическим критериям достоверности не удовлетворяют, в относительно легких ядрах это обусловлено отсутствием в экспериментах учета вклада двухнуклонной нейтрон-протонной реакции

(γ, 1n1p);

 большое количество данных о сечениях парциальных реакций содержатся в результатах экспериментов на пучках тормозного γ-излучения, но не опубликованы;

впервые получены сечения реакций

⁵²Cr(γ, xn) и ⁵²Cr(γ, 2n)⁵⁰Cr,

а также - ⁶⁸Zn(ү, 1n)⁶⁷Zn, ⁶⁸Zn(ү, 2n)⁶⁶Zn и ⁶⁸Zn(ү, sn).

Спасибо за внимание!

LXXV Международная конференция «ЯДРО-2025. Физика атомного ядра и элементарных частиц. Ядерно-физические технологии» 1 - 6 июля, Санкт-Петербург