

Measurements of Gamma-Ray Emission Cross Sections and Angular Distributions from (n, Xγ) Reactions of 14.1 MeV Neutrons with O, Cl, K, Ca, Ti, Cr, Fe, and Ni nuclei

D.N. Grozdanov for **TANGRA** collaboration

The work was carried out with the financial support of the RSCF (grant No. 23-12-00239).

Elements	Importance for Neutron-Nuclear Physics and Nucleosynthesis	Importance for Nuclear Reactor Technology	
Carbon (C), Oxygen (O), Magnesium (Mg)	 Helps in understanding nuclear forces, interactions, and reaction mechanisms. Plays a crucial role in stellar nucleosynthesis, particularly in forming heavier elements through fusion processes. Fundamental to the study of quantum mechanics and particle physics, aiding in the understanding of matter and energy interactions. 	 Essential for slowing down fast neutrons, improving reactor efficiency. Key for optimizing neutron moderation and reactor design. Investigates structural integrity under neutron exposure. Important in fusion processes, particularly in plasma containment and stability. Used in molten salt reactors for heat transfer and chemical stability. 	
Chromium (Cr), Iron (Fe), Nickel (Ni)	 Important for investigating neutron interactions, capture processes, and reaction cross-sections involving heavier elements. Contributes to nucleosynthesis processes in stars and supernovae, aiding in the formation of heavier elements. Essential for understanding the behavior of materials under extreme conditions, linking to fundamental physics principles. 	 Improves safety and performance of materials under neutron bombardment. Assesses material longevity and performance under neutron exposure. Enhances mechanical properties and corrosion resistance of reactor materials. Important for structural components in fusion reactors and molten salt reactors. 	

Elements	Importance for Neutron-Nuclear Physics and Nucleosynthesis	Importance for Nuclear Reactor Technology
Calcium (Ca), Chlorine (Cl)	 Contributes to understanding nuclear reactions involving light nuclei and the behavior of halogens in nuclear processes. Plays a role in nucleosynthesis in stars, although not primarily involved in fission or fusion. Important for studying fundamental interactions and decay processes, enhancing knowledge of atomic structure. 	 Critical for designing effective shielding solutions in nuclear applications. Provides insights into the chemical behavior of chlorine in nuclear contexts, aiding in waste management strategies. Plays a role in the chemistry of molten salt reactors, enhancing safety and efficiency.
Potassium (K)	 Important for investigating neutron interactions, capture processes, and reaction cross-sections involving heavier elements. Contributes to nucleosynthesis processes in stars and supernovae, aiding in the formation of heavier elements. Essential for understanding the behavior of materials under extreme conditions, linking to fundamental physics principles. 	 Important for health physics and radiation safety research. Improves analytical methods for trace element detection in various fields. Can be used in molten salt reactors for heat transfer and as a tracer in fusion studies.

Cross-section data sources ${}^{12}C(n,n'\gamma_{4439keV}){}^{12}C$

Cross-section data sources ${}^{48}\text{Ti}(n,n'\gamma_{984\text{keV}}){}^{48}\text{Ti}$

https://doi.org/10.61092/iaea.y3q8-a4b5

INDC(NDS)-0740

Distr. ST. G

INDC International Nuclear Data Committee

Evaluation of the 48 Ti(n,n' γ_{984keV}) γ -ray production cross section for standards

The tagged neutron method (TNM) & TANGRA setup

Tagged neutrons flux: 10⁶ neutr/sec

Interesting for nuclear reactions research:

• Angular distributions of n and γ

Correlation between n and γ

- 1. ING-27 neutron generator
- 2. Sample 20×20×X cm
- 3. HPGe γ -detector (2 pcs, 60% eff)
- 4. LaBr3 detector (4 pcs)
- 5. Collimator (Fe + Pb)

Sample characteristics

Sample	Density (g/cm ³)	Size (cm ³)	Isotopic composition
CH_2Cl_2	1.294	20 x 20 x 4	¹² C - 98.9%, ³⁵ Cl - 75.8%, ³⁷ Cl - 24.2%
KCl	1.254	20 x 20 x 4	³⁹ K - 93.3%, ⁴¹ K - 6.7%, ³⁵ Cl - 75.8%, ³⁷ Cl - 24.2%
CaO	0.628	20 x 20 x 4	⁴⁰ Ca - 96.9%, ⁴⁴ Ca - 2.1%, ¹⁶ O - 98.7%
TiO ₂	0.878	20 x 20 x 4	${}^{46}\mathrm{Ti}-8.3\%,{}^{47}\mathrm{Ti}-7.4\%,{}^{48}\mathrm{Ti}-73.7\%,{}^{49}\mathrm{Ti}-5.4\%,{}^{50}\mathrm{Ti}-5.2\%,{}^{16}\mathrm{O}-98.7\%$
Cr ₂ O ₃	2.081	20 x 20 x 2	⁵⁰ Cr - 4.3%, ⁵² Cr - 83.8%, ⁵³ Cr - 9.5%, ⁵⁴ Cr - 2.4%, ¹⁶ O - 98.7%
Fe	3.629	20 x 20 x 2	⁵⁴ Fe - 5.8%, ⁵⁶ Cr - 81.8%, ⁵⁷ Fe - 2.1%
Ni ₂ O ₃	2.070	20 x 20 x 2	⁵⁸ Ni - 68.1%, ⁶⁰ Ni - 26.2%, ⁶² Ni - 3.6%, ¹⁶ O - 98.7%

Measurement of "tagged" neutron beam profiles

2D-detector, made of 4 double-sided stripped position-sensitive Si-detectors

Each Si detector consists of 32x32strips ~1.8 mm thick Size of one detector: $60x60 \text{ mm}^2$ Total size: 120x120mm² Thickness: 0.3 mm Neutron detection efficiency: ~ 0.8%

Data processing: Time spectra

Diagram energy $(E\gamma)$ – the time between the registration of a γ – quantum and its corresponding α particle $(T\gamma - T\alpha)$ formed as a result of reactions in the sample, with a highlighted coincidence window.

Example of time spectra (in the energy window of about 1 - 2 MeV) for HPGe detector a) and LaBr detector b).

Where: A – With sample, B – Without sample, C – Difference. 1 – is γ -from (Fe – Pb) - Collimator, 2 – γ from sample, 3 – is scattered neutrons

Data processing: Energy spectra

)
)
)
)
)
)
)

- A-with sample, B-without sample,
- C difference (net spectrum).

Results of cross-section measurements for oxygen 6129.89 (keV) 160(n,n³100</sub> ngular distributions

Results of cross-section measurements for oxygen

Results of cross-section measurements for oxygen

			σ (mb)	
Energy (keV)	Reaction	Our Data	Talys	Simakov
169	$^{16}O(n,\alpha)^{13}C$	22 (5)	23	
298	¹⁶ O(n,p) ¹⁶ N	31 (8)	23	
2208	¹⁶ O(n,n') ¹⁶ O	17 (5)	25	
2742	¹⁶ O(n,n') ¹⁶ O	18 (5)	51	38 (4)
3684	$^{16}O(n,\alpha)^{13}C$	53 (13)	74	58 (5)
3853	$^{16}O(n,\alpha)^{13}C$	29 (7)	40	34 (4)
6129	¹⁶ O(n,n') ¹⁶ O	114 (29)	132	148 (10)

Results of cross-section measurements for chlorine: Angular and Energy distributions

3103.52 (keV) 37Cl(n,n')37Cl

3002.30 (keV) 35Cl(n,n')35Cl

Results of cross-section measurements for chlorine

	Reaction	σ (mb)		
Energy (keV)		Our Data	Talys	Simakov
536	³⁷ Cl(n,n') ³⁷ Cl	51 (4)	27	
788	³⁷ Cl(n,2n) ³⁶ Cl	142 (11)	175	
906	³⁷ Cl(n,n') ³⁷ Cl	74 (8)	47	
1164	³⁷ Cl(n,2n) ³⁶ Cl	43 (3)	35	
1185	³⁵ Cl(n,n') ³⁵ Cl	57 (4)	15	
1219	³⁵ Cl(n,n') ³⁵ Cl	27 (2)	17	96 (20)
1266	³⁵ Cl(n,na) ³¹ P	24 (4)	20	48 (16)
1676	$^{35}Cl(n,\alpha)^{32}P$	43 (5)	26	

		σ (mb)		
Energy (keV)	Reaction	Our Data	Talys	Simakov
1726	³⁷ Cl(n,n') ³⁷ Cl	37 (10)	22	289 (90)
1763	³⁵ Cl(n,n') ³⁵ Cl	70 (6)	35	158 (43)
1991	³⁵ Cl(n,p) ³⁵ S	34 (2)	17	
2645	³⁵ Cl(n,p) ³⁵ S	43 (3)	35	
2645	³⁵ Cl(n,n') ³⁵ Cl	54 (4)	40	
3002	³⁵ Cl(n,n') ³⁵ Cl	9 (1)	20	
3103	³⁷ Cl(n,n') ³⁷ Cl	265 (19)	128	73 (15)

Results of cross-section measurements for potassium: Angular and Energy distributions

2167.47 (keV) 39K(n,d)38Ar

2167.47 (keV) 39K(n,d)38Ar

Results of cross-section measurements for potassium

		σ (mb)		
Energy (keV)	Reaction	Our Data	Talys	Simakov
346	³⁹ K(n,n') ³⁹ K	25 (2)	10	
669	³⁹ K(n,d) ³⁸ Ar	22 (2)	26	
783	³⁹ K(n,n') ³⁹ K	105 (5)	22	
786	³⁹ K(n,a) ³⁶ Cl	99 (5)	9	33 (24)
788	³⁹ K(n,a) ³⁶ Cl	105 (5)	40	
923	³⁹ K(n,n') ³⁹ K	43 (3)	7	
1129	³⁹ K(n,n') ³⁹ K	25 (2)	18	
1164	³⁹ K(n,a) ³⁶ Cl	25 (2)	32	21 (9)
1209	³⁹ K(n,d) ³⁸ Ar	14 (1)	7	

Energy		σ (mb)		
(keV)	Reaction	Our Data	Talys	Simakov
1267	³⁹ K(n,p) ³⁹ Ar	19 (2)	16	22 (9)
1312	³⁹ K(n,n') ³⁹ K	18 (2)	23	
1642	³⁹ K(n,d) ³⁸ Ar	56 (2)	55	
1677	⁴¹ K(n,n') ⁴¹ K	30 (5)	97	116(11)
2167	³⁹ K(n,d) ³⁸ Ar	130 (3)	240	218 (25)
2342	³⁹ K(n,p) ³⁹ Ar	19 (2)	9	
2351	³⁹ K(n,n') ³⁹ K	19 (2)	6	
2814	³⁹ K(n,n') ³⁹ K	120 (5)	101	77 (8)
3597	³⁹ K(n,n') ³⁹ K	35 (2)	29	

Results of cross-section measurements for calcium: Angular and Energy distributions

2167.47 (keV) 39K(n,d)38Ar

2167.47 (keV) 39K(n,d)38Ar

Results of cross-section measurements for calcium

Energy		σ (mb)		
(keV)	Reaction	Our Data	Talys	Simakov
755	⁴⁰ Ca(n,n') ⁴⁰ Ca	87 (5)	37	
770	⁴⁰ Ca(n,p) ⁴⁰ K	89 (5)	54	70 (15)
891	⁴⁰ Ca(n,p) ⁴⁰ K	40 (3)	39	51 (16)
1158	⁴⁰ Ca(n,p) ⁴⁰ K	18 (2)	10	28 (4)
1611	${}^{40}Ca(n,\alpha){}^{37}Ar$	11 (2)	56	64 (12)
2217	${}^{40}Ca(n,\alpha){}^{37}Ar$	16 (2)	20	
2814	⁴⁰ Ca(n,d) ³⁹ K	27 (2)	18	
3736	⁴⁰ Ca(n,n') ⁴⁰ Ca	77 (5)	122	46 (11)

Results of cross-section measurements for titanium: Angular and Energy distributions

Cross-section measurement results of titanium

Energy	Depation	σ (mb)		
(keV)	Reaction	Our Data	Talys	Simakov
370	⁴⁸ Ti(n,p) ⁴⁸ Sc	22 (2)	23	
889	⁴⁶ Ti(n,n') ⁴⁶ Ti ⁴⁷ Ti(n,2n) ⁴⁶ Ti	536 (17)	681 585	62 (7)
944	⁴⁸ Ti(n,n') ⁴⁸ Ti	76 (4)	39	47 (6)
983	⁴⁸ Ti(n,n') ⁴⁸ Ti ⁴⁹ Ti(n,2n) ⁴⁸ Ti	745 (19)	623 788	666 (61)
1037	⁴⁸ Ti(n,n') ⁴⁸ Ti ⁴⁹ Ti(n,2n) ⁴⁸ Ti	92 (3)	65 163	49 (7)
1120 1120 1121	⁴⁸ Ti(n,n') ⁴⁸ Ti ⁴⁹ Ti(n,2n) ⁴⁸ Ti ⁵⁰ Ti(n,n') ⁵⁰ Ti	194 (6)	334 314 245	32 (4)

Energy	Reaction	σ (mb)		
(keV)		Our Data	Talys	Simakov
1312	⁴⁸ Ti(n,n') ⁴⁸ Ti ⁴⁹ Ti(n,2n) ⁴⁸ Ti	350 (9)	263 444	238 (27)
1437	⁴⁸ Ti(n,n') ⁴⁸ Ti	60 (3)	36	49 (7)
1542	⁴⁹ Ti(n,n') ⁴⁹ Ti	450 (16)	148	32 (4)
2240	⁴⁸ Ti(n,n') ⁴⁸ Ti	35 (3)	23	32 (5)
2375	⁴⁸ Ti(n,n') ⁴⁸ Ti	88 (3)	55	57 (9)
2633	⁴⁸ Ti(n,n') ⁴⁸ Ti	38 (4)	9	

Results of cross-section measurements for chromium: Angular and Energy distribution

Results of cross-section measurements for chromium

Energy (keV)	Reaction	σ (mb)		
		Our Data	Talys	Simakov
320	⁵² Cr(n,d) ⁵¹ V	8 (1)	13	
704	⁵² Cr(n,n') ⁵² Cr	50 (3)	30	29 (3)
783	⁵⁰ Cr(n,n') ⁵⁰ Cr	76 (4)	497	
848	⁵² Cr(n,n') ⁵² Cr	75 (5)	15	
935	⁵² Cr(n,n') ⁵² Cr ⁵³ Cr(n,2n) ⁵² Cr	242 (10)	218 312	210 (9) 237 (9)
1006	⁵³ Cr(n,n') ⁵³ Cr ⁵⁴ Cr(n,2n) ⁵³ Cr	197 (15)	102 279	23 (4)
1289	⁵³ Cr(n,n') ⁵³ Cr ⁵⁴ Cr(n,2n) ⁵³ Cr	63 (9)	139 264	

Energy (keV)	Reaction	σ (mb)		
		Our Data	Talys	Simakov
1333	⁵² Cr(n,n') ⁵² Cr ⁵³ Cr(n,2n) ⁵² Cr	196 (9)	146 183	187 (13) 205 (8)
1434	⁵² Cr(n,n') ⁵² Cr ⁵³ Cr(n,2n) ⁵² Cr	797 (35)	708 826	695 (35) 783 (30)
1530	⁵² Cr(n,n') ⁵² Cr	62 (5)	39	40 (3)
1577	⁵² Cr(n,n') ⁵² Cr	13 (2)	12	
2337	⁵² Cr(n,n') ⁵² Cr	21 (2)	15	

Results of cross-section measurements for iron: Angular and Energy distribution

931.29 (keV) 56Fe(n,2n)55Fe

Results of cross-section measurements for iron

Energy	Reaction	σ (mb)		
(keV)		Our Data	Talys	Simakov
123 125	⁵⁶ Fe(n,p) ⁵⁶ Mn ⁵⁶ Fe(n,d) ⁵⁵ Mn	36 (4)	7 28	70 (17)
211 212	⁵⁴ Fe(n,p) ⁵⁴ Mn ⁵⁶ Fe(n,p) ⁵⁶ Mn	50 (3)	102 23	17 (1)
314	⁵⁶ Fe(n,p) ⁵⁶ Mn	10(1)	7	
367	⁵⁶ Fe(n,n') ⁵⁶ Fe	18 (2)	7	
378	⁵⁴ Fe(n,d) ⁵³ Mn	280 (20)	153	
411	⁵⁶ Fe(n,2n) ⁵⁵ Fe	31 (2)	55	53 (6)
477	⁵⁶ Fe(n,2n) ⁵⁵ Fe	16 (2)	28	50 (7)
846	⁵⁶ Fe(n,n') ⁵⁶ Fe ⁵⁷ Fe(n,2n) ⁵⁶ Fe	760 (42)	664 826	621 (29) 785 (48)
931	⁵⁶ Fe(n,2n) ⁵⁵ Fe	80 (4)	144	126 (25)
1037	⁵⁶ Fe(n,n') ⁵⁶ Fe	71 (4)	54	52 (6)

Energy (keV)	Reaction	σ (mb)		
		Our Data	Talys	Simakov
1238	⁵⁶ Fe(n,n') ⁵⁶ Fe ⁵⁷ Fe(n,2n) ⁵⁶ Fe	366 (15)	319 369	393 (22) 290 (16)
1316	⁵⁶ Fe(n,2n) ⁵⁵ Fe	139 (6)	59	54 (6)
1408	⁵⁶ Fe(n,2n) ⁵⁵ Fe	31 (2)	24	24 (5)
1670	⁵⁶ Fe(n,n') ⁵⁶ Fe	45 (3)	31	55 (6)
1771	⁵⁶ Fe(n,n') ⁵⁶ Fe	45 (2)	11	
1810	⁵⁶ Fe(n,n') ⁵⁶ Fe	58 (2)	29	63 (5)
2113	⁵⁶ Fe(n,n') ⁵⁶ Fe	40 (3)	18	41 (6)
2523	⁵⁶ Fe(n,n') ⁵⁶ Fe	12 (2)	12	21 (5)
2598	⁵⁶ Fe(n,n') ⁵⁶ Fe	39 (3)	17	35 (5)
3002	⁵⁶ Fe(n,n') ⁵⁶ Fe	15 (2)	8	

Results of cross-section measurements for nickel: Angular and Energy distribution

Results of cross-section measurements for nickel

Energy	Reaction	σ (mb)		
(keV)		Our Data	Talys	Simakov
112	⁵⁸ Ni(n,p) ⁵⁸ Co	21 (3)	37	
230	60Ni(n,p)60Co	137 (23)	41	
277	60Ni(n,p)60Co	9 (1)	39	
339	60Ni(n,2n)59Ni	180 (6)	126	
365	⁵⁸ Ni(n,p) ⁵⁸ Co	24 (2)	43	
465* 467*	⁵⁸ Ni(n,d) ⁵⁷ Co ⁶⁰ Ni(n,n') ⁶⁰ Ni	33 (3)	13 47	
826	60Ni(n,n')60Ni	104 (11)	138	25 (4)
931	⁵⁸ Ni(n,α) ⁵⁵ Fe	46 (6)	46	29 (9)

Energy (keV)	Reaction	σ (mb)		
		Our Data	Talys	Simakov
1160* 1163*	⁵⁸ Ni(n,n') ⁵⁸ Ni ⁶² Ni(n,n') ⁶² Ni	139 (6)	13 148	
1172* 1173*	⁶² Ni(n,n') ⁶² Ni ⁶⁰ Ni(n,n') ⁶⁰ Ni	458 (18)	463 166	81 (4)
1224	⁵⁸ Ni(n,d) ⁵⁷ Co	92 (4)	76	62 (7)
1316	⁵⁸ Ni(n,α) ⁵⁵ Fe	331 (15)	30	
1332	⁶⁰ Ni(n,n') ⁶⁰ Ni ⁶¹ Ni(n,2n) ⁶⁰ Ni	238 (11)	636 705	211 (24)
1454	⁵⁸ Ni(n,n') ⁵⁸ Ni	326 (16)	250	242 (27)
1787	60Ni(n,n')60Ni	117 (9)	62	

As a result of the experiment, the applicability of the discussed setup for measuring cross sections and angular distributions was demonstrated.

The obtained data demonstrate satisfactory agreement with the results of the most recent measurements conducted by other authors.

For the first time we measured cross sections for some lines with O, Cl, K, Ca, Ti, Cr, Fe and Ni nuclea

Thank you for your attention

Good team @ Good results