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Nuclear Energy Density Functional and Nucleon-Nucleon

interaction.

Until now, it has not been possible to construct an

interaction that would satisfy three basic conditions:

- Was realistic, i.e. described NN-phases.

- Correctly described the binding energies at the observed

nuclear radius.

- Provided a good description of spectroscopy.
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Hohenberg-Kohn theorem

Consider a system of N interacting particles described by the
Hamiltonian

Ĥ ≡ T̂ + v̂ + Ŵ

Let Ψ be the N-body w.f. and n(r⃗) the corresponding particle
density. Theorem:
�The nongenerate g.s.w.f. is a unique functional of the g.s.
density n0(r⃗)

Ψ0(r⃗1, r⃗2, ..., r⃗N) = Ψ0[n0(r⃗)].

As a consequence the g.s. expectation value of any observable
is a functional of n0(r⃗)

E0 ≡ E[n0(r⃗)] = ⟨Ψ[n0]|Ĥ|Ψ[n0]⟩
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Hohenberg-Kohn theorem

There exists functional F [n] such that the energy functional can
be written as

E[n] = F [n] +

∫
d3rv(r⃗)n(r⃗)

The functional F [n] is universal in the sense that for given NN-
interaction it does not depend on v(r⃗)
The formal de�nition of the H-K functional is

F [n] = ⟨Ψ[n]|T̂ |Ψ[n]⟩+ ⟨Ψ[n]|Ŵ |Ψ[n]⟩

The H-K theorem gives no practical guide to the construction
of the universal density functional.
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Hohenberg-Kohn theorem

The H-K theorem resembles in some respects ¾Method of contraction
description¿ in statistical physics:

t≫ τ0 =
rc
v̄

fs(x1, x2, ..., xN ; t) → fs(x1, x2, ..., xN ; f1(x
′, t))

Functional fs(x1, x2, ..., xN ; f1(x
′, t)) is universal and do not

depend on initial conditions.

R.V.Jolos and E.A.Kolganova Nuclear Energy Density Functionals



Kohn-Sham scheme

E =

∫
v(r⃗)n(r⃗)dr⃗ +

1

2

∫ ∫
n(r⃗)n(r⃗′)

|r⃗ − r⃗′|
dr⃗dr⃗′ + Ts[n] + Exc[n],

where Exc[n] is by de�nition the exchange and correlation energy:

Exc[n] =

∫
n[r⃗]εxc(n(r⃗))dr⃗.

From the stationary properties of E we obtain the equation:∫
δn(r⃗){v(r⃗) +

∫
n(r⃗′)

|r⃗ − r⃗′|
dr⃗′ +

δTs[n]

δn(r⃗)
+

d

dn
(nεxc(n))}dr⃗ = 0 (1)

subject to the condition∫
δn(r⃗)dr⃗ = 0. (2)
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Kohn-Sham scheme

The equations (1) and (2) are precisely the same as the one-
particle equation:

{−1

2
∇2 + [v(n(r⃗)) +

∫
n(r⃗′)

|r⃗ − r⃗′|
dr⃗′ +

d

dn
(nεxc(n))]}ψi(r⃗) = εiψi(r⃗)

with n(r⃗) =
∑N

i=1 |ψi(r⃗)|2. The existing theorem makes no
statement about the structure of εxc(n).
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Skyrme functional

Skyrme functional is constructed as an invariant composed of
all possible bilinear terms in the following local densities and
currents:

ρ0(r⃗) =
∑
σ,τ

ρ(r⃗, σ, τ ; r⃗, σ, τ)

ρ1(r⃗) =
∑
σ,τ

ρ(r⃗, σ, τ ; r⃗, σ, τ)τ

s⃗0(r⃗) =
∑
σ,σ′,τ

ρ(r⃗, σ, τ ; r⃗, σ′, τ)σ⃗σ′σ

s⃗1(r⃗) =
∑
σ,σ′,τ

ρ(r⃗, σ, τ ; r⃗, σ′, τ)σ⃗σ′στ
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Skyrme functional

j⃗T (r⃗) =
ı

2
(∇′ −∇)ρT (r⃗, r⃗

′)|r⃗=r⃗′ − current

J⃗T (r⃗) =
ı

2
(∇′ −∇)× ST (r⃗, r⃗

′)|r⃗=r⃗′ − spin− current tensor

τT (r⃗) = ∇ · ∇′ρT (r⃗, r⃗
′)|r⃗=r⃗′ − kinetic density

T⃗T (r⃗) = ∇ · ∇′ST (r⃗, r⃗
′)|r⃗=r⃗′ − kinetic spin density
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Skyrme functional

The Skyrme functional contains systematically all possible bilinear
terms in the local densities and currents up to 2nd order in
the derivatives, which are invariant with respect to parity, time-
reversal, rotational, translational and isospin transformations.

Esk =
∑
T=0,1

{Cρ
Tρ

2
T + C∆ρ

T ρT∆ρρT + Cτ
TρT τT + CJ

T J⃗ 2
T

+C∆J
T ρT∇ · J⃗ + CS

T S⃗
2
T + C∆S

T s⃗T ·∆S⃗T + CST
T S⃗T · T⃗T

+C∇S
T (∇ · ST )

2 + Cj
T j⃗

2
T + C∇j

T S⃗T · ∇ × j⃗T}

In applications the functional is parametrized directly by �tting
the coe�cients to the ground state data.
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Fayans functional

E = Ekin + Ev + Es + ECoul + Esl + Eanom,

Ev =
2

3

0

F
ρ0

[
av+

1− hv1+x+
1 + hv2+x+

x2+ + av+
1− hv1−x−
1 + hv2−x−

x2−

]
,

Es =
2

3

0

F
ρ0

as+r
2
0(∇x+)2

1 + hs+x+ + hs∇r
2
0(∇x+)2

,

x± =
(ρn ± ρp)

2ρ0
.

Such expressions allow an extrapolation to very high densities.
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Weizs�sacker's approach

In 1935 Weizs�acker proposed that an energy density approach
could be e�ective for calculating nuclear binding energy:

E =

∫
Fd3r

F =
ℏ2

32π2M

(∇ρ)2

ρ
+

4πℏ2

5M

(
3ρ

8π

)5/3

− f(ρ)
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Bethe-Weizs�sacker's formula

Bethe and Bacher in 1936 further developed Weizs�acker's idea
and introduced the nuclear mass formula:

E(N,Z) = avA+ asA
2/3 + ac

Z2

A1/3
+ aI

(N − Z)2

A

av as aI ac χE

-15.46 16.71 22.84 0.698 3.30 MeV

χ2
E =

∑ |Eexp
NZ − E(N,Z)|2

NE

NE = 2375
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NEDF, A.Bulgac et al.

E [ρn, ρp] = Ekin[ρn, ρp] + EC [ρn, ρp] + Eint[ρn, ρp]

Ekin[ρn, ρp] =
∑
τ=n,p

ℏ2

2mτ

[
1

9
|∇ρ1/2τ |2 + 3

5
(3π2)2/3ρ5/3τ ] + ...

Eint[ρn, ρp] = (η − 1

2
)
∑
τ=n,p

ℏ2

2mτ

|∇ρ1/2τ |2 +
2∑

j=0

Ej(ρ)β2j

Ej(ρ) = ajρ
5/3 + bjρ

2 + cjρ
7/3

ρ = ρn + ρp, β =
(ρn − ρp)

(ρn + ρp)
.
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NEDF, A.Bulgac et al.

The equation that determine equilibrium density of a nucleus is
obtained by minimizing

E(N,Z) =

∫
d3rE [ρn, ρp]

−η ℏ2

2mτ

∇2ρ1/2τ + Uτρ
1/2
τ = µτρ

1/2
τ

Uτ =
∂E [ρn, ρp]
∂ρτ

η b̃0 c̃ ã1 b̃1 χE

0.471 -3.15166 2.12378 1.048 -0.610 2.59 MeV

ãj = ajρ
2/3
0 /εF , b̃j = bjρ0/εF , c̃j = cjρ

4/3
0 /εF
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Dynamical properties

This hydrodynamic theory can be reformulated as

Ψ =
√
ρ exp(

ı

ℏ̃
ϕ), (ℏ̃ = η1/2ℏ)

L(Ψ, Ψ̇) = Ψ+

(
ℏ̃∂t +

ℏ̃2∇2

2m

)
Ψ− E(ρ)

ıℏ̃Ψ̇ = − ℏ̃2∇2

2m
Ψ+ E ′(ρ)Ψ
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Relativistic Energy Density Functional.

The paper of M.M.Johnson and E.Teller (1955) was, in fact,
the �rst attempt to construct REDF. The following statements
were made:

1. Nuclear interaction is strong. It means that at high energies
many mesons can be created, i.e. in NN-collisions several mesons
can be in virtual states.

2. In heavy nuclei the average number of mesons is much larger
than one. Due to Bose statistics they can be in one and the same
state. The wave function of this quantum state corresponds to
the nuclear potential.

3. This meson must be scalar.
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Relativistic Energy Density Functional.

The next step has been done by H.-P.D�urr. He indicated that
Dirac's equation symmetries do possible an introduction of both
scalar attractive and vector repulsive potentials. In the stationary
limit:

H = α⃗ · p⃗+ βM − βS + V0,

where V0 is a time like component of the vector potential.
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REDF based on the meson exchange theory.

Only as few mesons as possible are included.
π: J=0, T=1 and P = −
σ: J=0, T=0, P=+
ω: J=1, T=0, P = −
ρ: J=1, T=1, P = −
Without pions

Lint = −gσψ̄σψ − gωψ̄γµω
µψ − gρψ̄γµτ⃗ ρ⃗

µψ − eψ̄γµA
µψ

The following Dirac equation is derived using this Lagrangian

(γµ(ı∂
µ + V µ) +M + S)ψ = 0

where S(x) = gσσ(x), V
µ(x) = gωω

µ(x)+gρτ⃗ ρ⃗
µ(x)+eAµ(x).

Since meson masses are large Laplace operator can be neglected
in the stationary equations for meson �elds, and σ, ω0 and ρ03
becomes proportional to the corresponding nuclear densities.
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REDF based on the meson exchange theory.

For the total energy we obtain

E =

∫
d3rH(r) =

A∑
i=1

∫
d3rψ+

i (r)(−ıα⃗ · ∇+ βM)ψi(r)

+
1

2

∫
d3r
(
m2

σσ
2 −m2

ω(ω
0)2 −m2

ρ(ρ
0
3)

2
)

+

∫
d3r
(
gσρsσ + gωρvω

0 + gρρ3ρ
0
3 + eρcA

0
)
.
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OBEP Problems.

Width of σ - meson � 400-700 MeV, cτ =0.3 fm.

ω - meson - ℏ/mc = 0.25 fm.
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Relativistic energy density functional based on chiral EFT.

N.Finelli, N.Kaiser, D.Vretenar, W.Weise.

In this approach the construction of EDF is based on the following
conjectures:

1. The nuclear ground state is characterized by strong scalar and
vector �elds which have their origin in the in-medium changes
of the scalar quark condensate and of the quark density.

2. Pionic �uctuations are superimposed on the condensate background
�elds.
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Relativistic energy density functional based on chiral EFT.

The energy functional is assumed to be decomposed into three
terms:

F [ρ] = Tkin[ρ] + EH [ρ] + Exc[ρ]

EH is the Hartree energy. We assume that large scalar and
vector mean �elds, that have their origin in the in-medium
changes of the quark condensate, determine EH .
Pionic �uctuations including one- and two-pion exchange are
incorporated in the Exc.

R.V.Jolos and E.A.Kolganova Nuclear Energy Density Functionals



Relativistic energy density functional based on chiral EFT.

The relativistic Lagrangian includes:

isoscalar-scalar (S),

isoscalar-vector (V),

isovector-scalar (TS)

isovector-vector (TV)

and e�ective four-fermion interaction vertices with density dependent
coupling strengths.
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Relativistic energy density functional based on chiral EFT.

The ground state energy of the even-even nucleus with A-nucleons
is presented as:

E0 =
A∑

k=1

εk −
1

2

∫
d3r{[G(0)

s +G(π)
s (ρ)]ρ2s +G

(π)
TS(ρ)ρ

2
S3

+[G
(0)
V +G

(π)
V (ρ)]ρ2 +G

(π)
TV (ρ)ρ

2
3 +

∂G
(π)
s (ρ)

∂ρ
ρ2sρ

+
∂G

(π)
TS(ρ)

∂ρ
ρ2s3ρ+

∂G
(π)
V (ρ)

∂ρ
ρ3 +

∂G
(π)
TV (ρ)

∂ρ
ρ23ρ

+D
(π)
S ρs∇2ρs + eρchA

(0)}

where εk denotes single particle Kohn-Sham energies.
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Relativistic energy density functional based on chiral EFT.

The coupling constants are decomposed as

Gi(ρ̂) = G
(0)
i +G

(π)
i (ρ̂),where i = S, V

Gi(ρ̂) = G
(π)
i (ρ̂),where i = TS, TV

The density independent part arise from isoscalar-scalar and -

vector background �elds, whereas G
(π)
i (ρ̂) are generated by one-

and two-pion exchange dynamics.
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Relativistic energy density functional based on chiral EFT.

M.A.Shifman, A.I.Vainstein, and V.I.Zakharov

B.L.Io�e

E.G.Drukarev and E.M.Levin

The following estimates follows from the QCD sum rules:

G
(0)
S = −σNMN

m2
πf

2
π

G
(0)
V = −4(mu +md)MN

m2
πf

2
π

σN
mu +md

ρs = < q̄q >p − < q̄q >0
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Relativistic energy density functional based on chiral EFT.

The resulting expressions for the density dependent couplings
are:

G(π)
s = cs1 + cs2ρ

1/3 + cs3ρ
2/3 + cs4ρ,

G(π)
v = c̄v1 + c̄v2ρ

1/3 + c̄v3ρ
2/3 + c̄v4ρ,

G
(π)
TS = cts1 + cts2ρ

1/3 + cts3ρ
2/3 + cts4ρ,

G
(π)
TV = ctv1 + ctv2ρ

1/3 + ctv3ρ
2/3 + ctv4ρ,
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Relativistic energy density functional based on chiral EFT.

The nuclear energy density functional developed above contains
at most 7 signi�cant parameters, each clearly related to speci�c
properties of nuclei.

The values of the parameters are adjusted to the properties of
nuclear matter, binding energies, charge radii and di�erences
between proton and neutron radii of spherical nuclei.

The resulting optimal parameter set is remarkably close to the
anticipated QCD sum rules and ChPT values, with exception of
two constants associated with 3-body correlations.
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Conclusion

1. The parameters of the NEDF are �tted mainly without reference
to any NN-interaction.

2. NEDF is given as expansion in degrees of density and currents
(excluding Fayans functional).

3. The changes of the quark condensate and quark density in
the presence of the barionic matter are sources of strong scalar
(attractive) and vector (repulsive) �elds experienced by nucleons
in the nucleus. These �elds produce Hartree mean �eld nucleon
potential, and are at the origin of the large energy spacings
between spin-orbit partner states in nuclei.
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