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Cluster Degrees of Freedom

• It is important to take into account cluster degrees of freedom, when

describing nuclei near the magic core.

• Clustering is essential in explaining excitations associated with the

formation of superdeformed states in atomic nuclei.

• In the proton pickup reaction 45Sc(3He, d)46Ti at a beam energy of

30 MeV, new levels with excitation energies greater than 10 MeV

were discovered.

• The possibility of interpreting these states as a cluster system of
42Ca+4 He was analyzed.



3He+45Sc−→46Ti+d



Experimental results



Hyperdeformed state in 46Ti as an α-cluster state



Degrees of Freedom of DNS

.

• rotation of the system as a

whole ΩR = (θR , ϕR)

• rotation of the deformed

fragment Ωh = (θh, ϕh)

• relative motion in R

Daughter nucleus can be deformed. It is assumed it has axially-symmetric

quadrupole β2 and octupole β3 deformations.



Hamiltonian for the α-particle DNS

The classical expression for the kinetic energy:
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The quantum kinetic energy operator:
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Hamiltonian for the α-particle DNS

As a function of angular variables, the

interaction energy in the DNS can be

approximated with good accuracy as:

V (η, ϵ) = C0(ξ) + C2(ξ)

√
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2
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where ϵ is the angle between the vector R

and the symmetry axis of the deformed

fragment. This angle is related to the

Euler angles ΩH and ΩR as:
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T.M. Shneidman et al., Phys.Rev. C 92,

034302 (2015).



Wave functions

In the trial wave function, the coordinate ξ can be separated from the

angular coordinates:

Ψ(ξ,ΩH ,ΩR) = ψ(ξ)G (ΩH ,ΩR).

To determine the wave function ψ(ξ), we obtain the Schrödinger

equation in the form:(
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For the wave function G (ΩH ,ΩR), the Schrödinger equation takes the

form:(
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Collective motion in mass asymmetry

Ψ(r1, r2, ....) = Ψm(r1, r2, ....)+S
1/2
α Ψα(r1, r2, ....)+...+S

1/2
C ΨC (r1, r2, ....)

Mass asymmetry coordinate: x = ± 2A2
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T.M. Schneidman et al, PRC 67, 014313

(2003).

U(x) = B1(x)+B2(x)−B+VN(x)+VC (x)

G. G. Adamian et al, IJMPE 5, 191 (1996).
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G.G. Adamian et al., NPA 584, 205 (1995).



Potencial energy

Potential energy

U(ξ) = V (ξ)− (B(A,Z )− B(A1,Z1)− B(A2,Z2))

The nucleus-nucleus potential V (ξ) is calculated as:

V (ξ) = VC + VN

The Coulomb potential:
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The interaction between nucleons and nuclei:
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Potential energy



Mass parameters
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G.G. Adamian et al., NPA 584, 205 (1995).



Mass parameters

Figure 1: Caption



Wave equation
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Numerical differentiation: finite differences
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Diagonalization of matrix of Hamiltonian
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Angular oscillations

To describe angular oscillations in the alpha-cluster dinuclear system (DNS), it is necessary to

solve the Schrödinger equation(
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with the Hamiltonian:
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The Hamiltonian is diagonalized over a set of basis functions

Φ
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LM,π = Fn(ξ)
[
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where n=0,1,2,..., l1=0,2,4,..., l2=0,1,2... Since the heavy fragment is assumed to have only

axially symmetric quadrupole deformation, the wave function should remain invariant under the

transformation: θh → π− θh, ϕh → π+ϕh,and the quantum number l1 can only take even values.



Angular oscillations



Analysis of the results



Conclusion

• Using the dinuclear system (DNS) model, the wave functions and

potential energy of the system were calculated.

• These results enabled the interpretation of the observed highly

excited states as superdeformed states associated with the formation

of an alpha-cluster configuration (42Ca+4 He).

• The findings can be applied to further studies of superdeformed and

hyperdeformed nuclear states, as well as to the development of new

theoretical models of nuclear structure.

• The study supports the hypothesis of a cluster nature in the highly

excited states of 46Ti . However, to conclusively determine the

existence of a deformed alpha-cluster structure in these states,

additional experiments measuring deuteron angular distributions for

the 45Sc(3He, d)46Ti reaction over a wide angular range are

required.
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